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INTRODUCTION

Spatial patterning in community types characterises 
many ecosystems. For example, in arid ecosystems 
patches of shrubs and barren soil 25  m in diameter 
form mosaic patterns (Klausmeier, 1999). On mountain 
ranges, strips of ribbon forests 500 m wide intersperse 
with wider bands of grassy meadows (Hiemstra et al., 
2006). A longstanding focus of empirical and theoretical 
work has aimed to resolve the processes generating eco-
system patterns and their spatial scale.

Spatial patterning may occur due to underlying en-
vironmental heterogeneity, local biological feedbacks, 
or an interactive combination of both drivers (Rietkerk 
& Van de Koppel 2008). Examples of environment-
driven patterns include gradients in desiccation stress 

that zone intertidal communities from heat-tolerant 
to more sensitive species with increasing water depth 
(Dayton, 1971). Patterning can also arise when biolog-
ical feedbacks reinforce distinct ecological states. If 
interactions change from positive to negative with the 
distance between individuals, self-organised patterns 
of populated and empty areas occur in homogeneous 
environments, as seen in shrub mosaics in arid ecosys-
tems (Rietkerk & Van de Koppel 2008). Feedbacks that 
do not change sign with distance can also drive patterns 
over large scales by amplifying the effects of ecosys-
tem heterogeneity. For instance grasses predominate 
in areas of low-moderate herbivory by diluting graz-
ing across many plants while areas with elevated live-
stock densities exhibit a disproportional plant density 
collapse via overgrazing (Noy-Meir, 1975). In all cases, 
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Abstract

Ecosystem patterning can arise from environmental heterogeneity, biological feed-

backs that produce multiple persistent ecological states, or their interaction. One 

source of feedbacks is density-dependent changes in behaviour that regulate spe-

cies interactions. By fitting state-space models to large-scale (~500 km) surveys on 

temperate rocky reefs, we find that behavioural feedbacks best explain why kelp 

and urchin barrens form either reef-wide patches or local mosaics. Best-supported 

models in California include feedbacks where starvation intensifies grazing across 

entire reefs create reef-scale, alternatively stable kelp- and urchin-dominated states 

(32% of reefs). Best-fitting models in New Zealand include the feedback of urchins 

avoiding dense kelp stands that can increase abrasion and predation risk, which 

drives a transition from shallower urchin-dominated to deeper kelp-dominated 

zones, with patchiness at 3–8 m depths with intermediate wave stress. Connecting 

locally studied processes with region-wide data, we highlight how behaviour can 

explain community patterning and why some systems exhibit community-wide al-

ternative stable states.

K E Y W O R D S
alternative stable states, behaviour, dynamical models, kelp forests, spatial patterning

www.wileyonlinelibrary.com/journal/ele
mailto:﻿
https://orcid.org/0000-0001-7112-8069
https://orcid.org/0000-0001-6102-1110
https://orcid.org/0000-0002-1364-3123
https://orcid.org/0000-0002-1642-628X
mailto:vkaratayev@ucdavis.edu


2  |      GRAZER BEHAVIOUR CAN REGULATE LARGE-SCALE PATTERNING OF COMMUNITY STATES

feedback-induced patterning requires strong and often 
nonlinear species interactions.

One possible driver of biological feedbacks is density-
dependent changes in behaviour (Peckarsky et al., 2008). 
Herbivory can decline in the presence of predators 
(McPeek & Peckarsky, 1998) or increase when herbivores 
form large groups that reduce predation risk (Gil et al., 
2018). On coral reefs, for instance the activity of herbivo-
rous fishes as part of schools can account for 68% of total 
consumption (Gil & Hein, 2017) and influence the po-
tential for coral-dominated or algal-dominated commu-
nity states (Gil et al., 2020). Density-dependent changes 
in behaviour could also create biological feedbacks, for 
example when dense plant aggregations increase preda-
tion risk and decrease herbivory rates, feeding back to 
increase local plant recruitment. This forms one possi-
ble mechanism for why plant stands expand after pred-
ator re-introduction (e.g. wolves in Yellowstone, Fortin 
et al., 2005) and recede around refugia from predation 
following herbivore recovery in the intertidal (Matassa 
& Trussell, 2011) and on coral reefs (Madin et al., 2019). 
However, because isolating the effects of behaviour from 
herbivore density is challenging over large scales (e.g. di-
rect vs. indirect predator effects, Creel & Christianson, 
2009), comparing models with and without behaviour 
can provide the next step towards understanding whether 
behaviour can underpin community patterning.

Temperate rocky reefs exemplify each of patterned 
communities, behaviour-mediated herbivory and en-
vironmental variation. Patterning of two distinct eco-
logical states in these ecosystems, kelp forests and 
urchin-dominated barrens (Figure 1a, c), can occur at 
drastically different scales in different regions. Whereas 
large-scale (> 1 km) barrens and forests span all depths 
on California reefs (Figure 1d; Cavanaugh et al., 2014), 
in New Zealand metre-scale patchiness occurs at inter-
mediate depths while kelp occupies deeper water and ur-
chins shallower zones (Figure 1b; Parsons et al., 2004). 
This difference in patchiness scales might arise from a 
greater sensitivity of the dominant kelp species in New 
Zealand to wave stress in shallow areas (Grace, 1983) 
and more intensive, larger-scale pulses of urchin recruit-
ment (Hart & Scheibling, 1988) or mortality (Lafferty, 
2004) in California.

Regional differences in temperate reef patchiness 
could alternatively (or additionally) arise from differ-
ences in urchin behaviour. Urchins can exhibit two 
feeding modes: passive grazing on kelp fronds de-
tached from plants and carried to the bottom by cur-
rents (‘drift kelp’ hereafter), typically while occupying 
cryptic habitats (e.g. crevices) protected from predators 
and physical stress, and active grazing on the open sub-
strate (Dayton, 1985a; Harrold & Reed, 1985). In New 
Zealand, urchins switch to active grazing in local 1–5 m2 
patches when sub-canopy kelp densities become insuffi-
cient to deter active grazing via physical abrasion (kelp 
‘whiplash’ effects, Konar, 2000) or by attracting urchin 

predators (Cowen, 1983; Figure 2e). In California, giant 
kelp concentrates biomass in large canopies well above 
the seafloor, reducing local abrasion while increasing 
reef-wide drift kelp subsidies. A switch to active graz-
ing can therefore happen synchronously across each 
reef in California when low kelp densities and low drift 
kelp subsidies to the seafloor cause reef-wide urchin 
starvation (Ebeling et al., 1985; Harrold & Reed, 1985; 
Figure 2d). As declines in kelp density increase graz-
ing activity locally (in New Zealand) or reef-wide (in 
California) and feed back to further deplete kelp, we 
hypothesise that behaviour can create region-specific 
community patterning. The ability of behavioural feed-
backs and distinct states to explain temperate reef spa-
tial patterning also informs whether urchin barrens and 
kelp forests occur as alternative stable states, a long-
debated phenomenon in rocky temperate reefs (Petraitis 
& Dudgeon, 2004).

Here we evaluate whether or not behaviour can af-
fect large-scale community patterns in temperate rocky 
reefs by comparing observed patterns to predictions 
from models that incorporate environmental gradients, 
urchin density and behavioural changes in urchin graz-
ing. We represent behavioural changes in urchin graz-
ing using a functional response with decreased grazing 
rate at high kelp densities, as might occur with a shift in 
grazing mode from active to passive with increased kelp 
density. The kelp density that affects grazing can be local 
as urchins avoid predators or abrasion or reef-wide as ur-
chins passively graze on drift kelp. First, we test whether 
accounting for behavioural feedbacks better explains ob-
served data, both compared to and in combination with 
environmental gradients. Second, we test whether the 
best-fitting behavioural feedbacks differ in spatial scale 
between regions and produce observed differences in 
patterning between New Zealand and California. Third, 
we test whether the best-fit models include alternative 
stable states, and if so, at what spatial scale.

M ATERI A LS A N D M ETHODS

In this section, we first describe our systems’ data used to 
characterise kelp patterning and environmental drivers. 
Second, we describe our full model with environmental 
gradients, grazing and behaviour, from which we can 
exclude individual elements to explore processes alone or 
in combination. Third, we describe analyses of (a) which 
factors best explain the data, (b) how incorporating 
behaviour affects patterning in each region and (c) 
whether best-fit models include alternative stable states.

Study systems

We focus our analysis on temperate rocky reefs in 
Northeast New Zealand (NZ) and the California 



      |  3KARATAYEV ET AL.

Northern Channel Islands (CA) dominated by kelp 
(Macrocystis pyrifera, CA, and Ecklonia radiata, NZ) or 
urchins (Strongylocentrotus purpuratus, Mesocentrotus 
franciscanus in CA and Evechinus chloroticus in NZ). 
Like many temperate reefs, fast kelp growth and 
intense urchin grazing characterise these systems: 
abundant urchins can denude kelp forests in weeks, 
while under low urchin densities kelp can recolonise 
barrens within a few months (Ebeling et al., 1985). 
In contrast, urchin populations experience lower 
turnover and f luctuate more gradually in response to 
urchin predator abundance and multi-year changes 
in ocean climate (Okamoto, 2014; Shears et al., 
2012). This difference in time scales means that kelp 
abundance and urchin grazing activity can reach 
steady state under a given urchin density, whereas 
urchin density depends little on local kelp abundance 
due to demographic openness (Okamoto, 2014) and 
can remain high in the absence of kelp (Filbee-Dexter 
& Scheibling, 2014; Ling et al., 2015).

Data for kelp spatial patterns and 
environmental drivers

We use surveys of kelp density spanning 200–300  km 
coastlines in each region, with 71 reefs sampled in 2001 
in New Zealand (Shears & Babcock, 2004) and 93 reefs 
sampled over 5–30  years in California (Caselle et al., 
2018; Kushner et al., 2013). This geographical extent 
allows us to disentangle the effects of multiple processes 
by sampling a wide range of environments and increases 
the robustness of our results to inter-annual variation 
in the environment by exceeding the spatial scales of 
storms, upwelling variability or recruitment pulses (8–
50  km; Cavanaugh et al., 2013; Karatayev & Baskett, 
2020).

Samples in both systems were collected at the end of 
the kelp growing season (July–August in CA, March–
June in NZ) and span 100–500  m2 of each reef s (see 
Appendix A for details on dataset and sampling meth-
odologies). At the reef scale, we account for potential 

F I G U R E  1   Visualisation of kelp and urchin density in New Zealand (a, b) and California (c, d). (a, c) Region-specific distribution of 
kelp- and urchin-dominated states with N indicating total numbers of samples. Dashed lines in (a, c) denote kelp threshold densities used to 
categorise community regimes as forested (i.e. exceeding the 10th quantile of kelp densities in samples with kelp in each region) and barren 
otherwise. (b) Depth zonation of New Zealand reef communities 2 years after the establishment of the Leigh Marine reserve, reproduced from 
Leleu et al. (2012). Inset in shows the local kelp and barren patchiness in mid-depth zones, and ‘shallow zone’ denotes intertidal and shallow 
sub-tidal areas dominated by wave-tolerant brown algal species other than Ecklonia. (d) Reef-scale patchiness of forest and barren community 
states at Santa Rosa Island, California in 2016 from satellite imagery (shaded areas) and 6 monitoring sites (arrows, with arrow colour denoting 
site state). See Appendix A for details on state estimation from satellite imagery and density measurements in (a, c). Note that exact state 
classifications may differ between panels (a) vs. (b) and (c) vs. (d)
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environmental drivers of kelp dynamics, including 
total urchin predator density Ps (Caselle et al., 2018; 
Shears et al., 2008), wave stress Es (Cavanaugh et al., 
2011) and temperature-derived nitrate concentration Gs 
(Table S1). In the model below we omit nitrate limita-
tion, which did not affect preliminary fits (Appendix 
A). Each reef was sampled using transects with 15–50 
1–20 m2 quadrat samples spanning a ~15 m water depth 
gradient (2018 NZ samples, 16,539 CA samples). Within 
each quadrat q, we account for densities (ind m−2) of 
adult kelp plants and urchins (>  25  mm test diameter, 
Uq), water depth Zq (which attenuates waves) and near-
bottom light availabilityLq. While Ecklonia can inhabit 
shallower depths than Macrocystis, in New Zealand we 
omitted 228 shallow (<3m) samples where wave-tolerant 
algae displaced both Ecklonia and urchins (Appendix 
A); we also omitted 777 samples along continuous tran-
sects that recorded Ecklonia presence but not density.

Model description

Our model follows the dynamics of adult kelp abun-
dance Nq in 1–5m2 locations q across a 0.1–0.5 km2 reef 
s (Figure 2a). We model kelp reproduction, spore sur-
vival and adult survival as they depend on either local 
kelp density or kelp density averaged across the reef 
Ns = k−1

∑

k
q=1

Nq and reef-wide or local environmental 

factors. This model structure can produce kelp- and 
urchin-dominated regimes that form localised mosaics, 
gradients along depth-dependent environmental factors, 
or one regime spanning an entire reef. Below we describe 
the full model with all drivers, where zeroing out indi-
vidual dynamics yields sub-models with different driver 
combinations.

Kelp reproduces continuously during the year with 
a baseline fecundity m. Newly produced spores can 
disperse over short distances (<500 m for Macrocystis, 
Anderson & North, 1966; Reed et al., 1992). Therefore, 
we model the amount of spores r arriving in a location q 
as (1) the proportion � of all spores dispersing through-
out the reef plus (2) the proportion 1 − � of locally pro-
duced spores dispersing <5 m:

Survival of settled zygotes into adult sporophyte stages 
depends on both local and reef-scale factors. To incorpo-
rate the environmental gradient in light, we assume light 
availability increases with measured visibility Lq given 
proportionality constant gL and declines with local den-
sity dominant adults Nq given proportionality constant d 
(Dayton, 1985a). Due to their greater palatability com-
pared with adults, juveniles also experience high rates 
of urchin grazing �R proportional to local urchin den-
sity Uq, which can depend on behaviour according to the 

(1)r(Nq,Ns) = m(�Ns + (1 − �)Nq).

F I G U R E  2   Model layout. (a) Local samples (red bars) on each reef span a depth gradient that influences wave intensity and light 
attenuation. Across reefs, forested and barren community types follow depth zonation in New Zealand but span entire reefs in California. (b) 
Dynamics of local kelp abundance N

q
 depend on environmental factors (red boxes), stochasticity and urchin behaviour (blue box) that affect 

adult survival (red arrow) or recruitment (green arrows). Circular endpoints on lines denote negative effects and flat endpoints denote positive 
effects; stochasticity in recruit survival Ω

R
 (lightning bolt and inset distribution) can have positive (Ω

R
> 1) or negative (Ω

R
< 1) effects. (c) 

Functional form of grazing with behavioural feedbacks absent (black) or present (blue), where grazing rate declines with either local (N
x
= N

q
)   

or reef-wide (N
x
= N

s
) kelp density through urchin shifts from active to passive grazing. (d) Reef-scale feedbacks where passive drift kelp 

subsidies at high kelp densities N
s
 reduce urchin grazing across the reef (blue lines), as expected to be relevant in California. (e) Local-scale 

feedbacks where predators and physical abrasion in dense kelp stands deter grazing locally (blue lines), as expected to be relevant in New 
Zealand
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function b(Nx), as described below. We account for envi-
ronmentally driven stochasticity in survival, as might be 
due to thermal stress or interspecific competition, using 
a log-normally distributed random variable ΩR. Finally, 
given fast maturation (2–3 months) and high sensitivity 
of juveniles to competition and grazing, we assume juve-
nile abundance quickly reaches steady state on the time 
scale of adult kelp abundance, so that overall recruit sur-
vival is

Adult mortality depends on local-scale urchin graz-
ing and wave stress Es. To incorporate the environmental 
gradient in wave stress, we model wave stress dissipa-
tion by depth Zq at more exposed sites following Bekkby 
et al. (2008). Dissipation depends on region-specific 
oceanographic features and weakens at exposed sites, 
represented by fw and scaling factor �. Per-capita adult 
mortality to wave stress is then

Grazing on adults occurs at a per-urchin rate �A, as 
with recruit survival can depend on behaviour according 
to b(Nx) described below. Thus, per-capita adult mortal-
ity from grazing is

To incorporate a feedback between kelp density and 
urchin behaviour in grazing, we assume urchin density is 
constant on the time scale of annual kelp dynamics but 
grazing rate can dynamically depend on adult kelp density 
(‘behaviour feedbacks’ hereafter). Specifically, we incor-
porate the potential for a decline in grazing rate at high 
kelp densities, as might occur due to a switch from active 
to passive grazing mode, with a per-kelp grazing inhibition 
factor �A in a generic `Type IV’ functional response (Bate 
& Hilker, 2014; Koen-Alonso, 2007). Dependence of this 
function on local-scale kelp density Nx = Nq represents 
local-scale feedbacks involving physical abrasion (expected 
in NZ), and dependence on reef-scale kelp density Nx = Ns 
represents reef-scale feedbacks where drift kelp availabil-
ity affects cryptic urchin behaviour and associated direct 
grazing on kelp (expected in CA). Urchins may addition-
ally avoid active grazing on reefs with high predator abun-
dance Ps. We integrate a per-predator grazing inhibition 
rate �P over the entire year to arrive at the proportional 
decline in grazing due to predator avoidance, exp( − �PP) 
(see Appendix B for separating predator effects on density 
vs. behaviour). Altogether, behaviour-mediated decline in 
urchin grazing is

The overall dynamics of local kelp abundance are 
then

Role of urchin behaviour

To compare the role of potential drivers (environmental, 
urchin density, behavioural), we compare the best fit of the 
full model (Eqn. 4) and simpler models that omit the effects 
of environmental factors (� = gL = 0), grazing (�i = 0),  
urchin predator avoidance (�P = 0) and kelp-density feed-
back on urchin grazing rate (�A = 0), each individually and 
in combinations. In Appendix C, we additionally evaluate 
whether herbivory dilution in a saturating Type II func-
tional response, a behaviour-independent feedback, can 
explain kelp patterning. We separate fits by region to esti-
mate region-specific parameters. Given high kelp growth 
rates and our end-of-growing-season surveys (see ‘Study 
system’), we assume kelp densities reach steady state within 
one year. Therefore, we fit model equilibria to observed kelp 
abundance (i.e. a state-space model) and verify that best-fit 
models reach equilibrium within one year in Appendix D. 
Our approach assumes kelp densities at a reef are independ-
ent among consecutive years, an approximation we verify 
in Appendix E.

To evaluate model performance, we numerically solve 
models for the steady-state kelp abundance under the 
observed conditions (Table S1) in each sample and year, 
and then compare these predictions with observed kelp 
densities. We use a Runge–Kutta solver (R 3.4.3, deSolve 
package) with initial kelp abundance across the reef ini-
tially high or low (80th and 5th quantiles of observed 
densities in samples with kelp). Low initial abundance 
can occur when senescence pulses (in NZ) or storms (in 
CA; Cavanaugh et al., 2011) precede the growing season. 
To account for a range of possible recruitment condi-
tions over the preceding year, we additionally solve the 
model under 10 realisations of ΩR starting from each 
initial condition (i.e. 20 total realisations, Figure 2c; ΩR 
realisations identical across samples and models). To im-
plicitly account for multiple secondary factors that allow 
kelp to occur in apparently adverse conditions (e.g. mi-
crosubstrate), we round predicted densities of 0 to 0.01.

For each quadrat, we compute the Poisson probabil-
ity of the observed kelp count under each realisation, 
and average these probabilities across realisations to re-
flect that observed densities can arise from any combi-
nation of initial abundance and recruitment conditions 
(Gelman et al., 2013). We then calculate the logarithm of 
this marginal likelihood and, summing across all sam-
ples in the region, arrive at the total model log likelihood 
under a given parameter set. We find the best-fitting 
parameter sets using the DIRECT (global) followed 
by COBYLA (local) optimisation algorithms in nloptr 
(Jones et al. 1993; Johnson, 2019) and compare models 

(2)SR(Nq,Nx) =
ΩR(1 − gL + gLLq − dNq)

1 + �RUqb(Nx)
.

(3)wq(Es,Zq) = �Esexp( − fwZqE
−1
s

).

(4)�A(Nx) = �AUqb(Nx).

(5)
b(Nx) =

exp( − �PP)

1 + �AN
2
x

.

(6)
dNq

dt
= r(Nq,Ns)SR(Nq,Nx) − wq(Es,Zq)Nq − �A(Nx)Nq.
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based on Bayesian Information Criterion differences 
(ΔBIC), where ΔBIC >4 indicates improved model fit 
(Bolker, 2008). We additionally calculate the squared 
correlation between predicted and observed (1) kelp den-
sities R2

N
 and (2) reef states (as defined below) R2

S
 aver-

aged across SR realisations, choosing best-fitting initial 
conditions when models predicted two stable states.

As outlying kelp density observations favoured max-
imal variation in ΩR, in the main analysis, we set the 
ΩR distribution mean to 1 and standard deviation to    
�R =  0.35 based on year-long recruitment experiments 
Moreno and Sutherland (1982) (i.e. distribution pa-
rameters � = log(�2

R
+ 1)−0.5, � = (log(�2

R
+ 1))0.5). In 

Appendix E, we evaluate model ranking robustness to 
±30% changes in �R, urchin-species-specific grazing, site 
effects and temporal autocorrelation.

Drivers of community patterning and presence of 
alternative stable states

To resolve how grazing and wave stress gradients can 
jointly pattern communities, we use the best-fitting models 
from each region to project predicted kelp abundance over 
the observed range of reef-scale urchin densities. Within 
each reef, we simulate 30 locations spanning the sampled 
depth range. Throughout, we set urchin distribution 
across depths and reef-scale wave stress, light availability 
and predator density to the average values observed in the 
data. We compare model projections with observed kelp 
patterns smoothed using 2-D splines.

To evaluate the role of behaviour in explaining specific 
aspects of observed community patterns, we compare 
survey results with predictions of our best-fitting mod-
els with and without behavioural feedbacks. For this, 
we first categorise the community state in each sample 
and model prediction (Figure 1a, c). Given that urchins 
can maintain barrens even when rare (Ling et al., 2015), 
we classify samples and predictions with urchins and few 
kelp (CA: ≤ 0.05 individuals m−2, NZ: ≤ 1 individual m−2, 
10th density quantiles in samples with kelp, Figure 1a,b) as 
urchin-dominated, omit samples with no urchins and few 
kelp (NZ: 10% of samples, CA: 2%) and classify remaining 
samples as kelp-dominated. For within-reef patterning, 
we focus on a subset of reefs sampled by placing quadrats 
end-to-end in contiguous line transects (777 NZ samples, 
5644 CA samples) and quantify patch sizes as the number 
of adjacent samples with the same community regime.

RESU LTS

Role of urchin behaviour

Behaviour-mediated grazing in California and an in-
teractive effect of behaviour-mediated grazing and en-
vironmental variation in New Zealand predominantly 

explains patterns in field data (Table 1). Best-fitting 
models in both regions include all three of environ-
ment, grazing and behaviour, and explain much of 
the variation in community states (NZ R2

S
 = 0.47; 

CA R2
S
 = 0.49). In models with behaviour, local-scale 

grazing feedbacks (i.e. kelp-density-mediated graz-
ing) in New Zealand and reef-scale grazing feed-
backs in California best explain the data (Table 1). 
In California, models with grazing and behavioural 
feedbacks only outperform models with grazing and 
environmental factors only (ΔBIC = 567). In both re-
gions, models with behaviour feedbacks outperform 
models without behaviour because they can explain 
the co-occurrence of high and low kelp densities at 
intermediate urchin densities (Figure 3). We find a 
similar model ranking when controlling for higher 
red urchin grazing rates, temporal autocorrelation, 
site effects and different levels of �R (Appendix E). 
We did not find support for Type II grazing satura-
tion (Appendix C).

In both regions, behaviour improved model fit pre-
dominantly through kelp-density feedbacks as com-
pared to predator-density-mediated behaviour. Models 
with environment and kelp-density-mediated behaviour 
outperformed models with environment and predator-
density-mediated behaviour (CA ΔBIC  =  7561; NZ Δ
BIC = 415). Nevertheless, best-fit declines in grazing via 
predator avoidance appeared strong (up to 78% in CA, 
26% in NZ) and strongly improved model fit in California 
(ΔBIC = 2272). Lower support for predator avoidance in 
New Zealand possibly arose because few reefs had abun-
dant predators or because predators congregate in kelp 
stands, an effect already captured by local kelp-density 
feedbacks.

Drivers of community patterning

The local scale of kelp-density behavioural feedbacks, 
combined with a decline in wave stress with depth, best 
explains the much smaller scale of community patterning 
in New Zealand than in California. In New Zealand, our 
best-fitting model predicts barrens as the only stable state 
in shallow areas (< 3 m) due to a combination of grazing 
and high wave stress (Figure 4b). At greater water depths 
that largely attenuate waves (> 8 m), we predict forests 
are the only stable state because kelp quickly forms 
dense stands that inhibit grazing. At intermediate wave 
stress between these zones, we predict that alternative 
stable states span 1–5m2 patches, where urchins 
concentrate grazing outside of dense kelp stands. This 
interface occurs at greater depths and urchin barrens 
cover a larger fraction of the system on reefs with greater 
overall urchin densities. In California, we predict that 
community regimes simultaneously span all reef depths 
due to the larger scale of grazing feedbacks (Figure 4d, 
Table 1).
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Presence of alternative stable states

Our best-fitting models predict that alternative stable 
states can occur in both regions (32% of CA samples, 
28% of NZ samples, Figures 3, 4b, d). In California, 
predicted alternative stable states occur at the scale of 
entire reefs (Figure 5b, d). In New Zealand, alternative 
stable states occur over only a narrow range of depth-
dependent wave stress intensities, such that our best-
fitting model predicts that the final reef state depends 
little on initial kelp abundance (Figure 5a). In this region, 
the small scale of kelp- and urchin-dominated patches 
observed in data arises only in models with local-scale 
behaviour feedbacks (Figure 5c). This shows that the 
spatial scale of behavioural feedbacks can determine the 
scale of patterning when feedbacks produce alternative 
stable states.

DISCUSSION

We show that behaviour can determine the presence and 
scale of community patterning by mediating consumer-
resource interactions in temperate rocky reefs. This 
potential occurs through feedbacks where kelp-density-
dependent changes in urchin grazing rate amplify 

consumption when resources decline, as might occur 
through a shift from passive to active grazing modality. 
The scale of this feedback determines the spatial extent 
of the resulting resource- or consumer-dominated 
community regimes. Specifically, kelp forests and urchin 
barrens spanning entire reefs in California Channel 
Islands are most consistent with large-scale feedbacks, 
as might occur when drift kelp are transported over 
large distances and starvation-induced active grazing 
occurs when kelp densities decline across entire reefs 
(Figures 4d, 5b; Table 1; Harrold & Reed, 1985). In 
contrast, in Northeast New Zealand feedbacks that 
deter grazing locally, as might occur when kelp stands 
increase predation or physical abrasion (Ebeling et al., 
1985; Konar, 2000), can explain fine-scale patterning 
of community regimes organised into distinct depth 
zonation by a gradient in wave stress (Figures 4b, 5a). 
Thus, feedbacks in consumer behaviour interact with 
environmental heterogeneity to pattern communities at 
specific scales.

Our findings expand the results of prior behaviour-
induced patterning studies in two ways. First, our ap-
proach disentangles the role of grazer density from 
behaviour by showing that models with environmental 
gradients and grazer densities do not predict observed pat-
terns without also accounting for behavioural feedbacks 

TA B L E  1   Results of model fitting and model comparison in California (top half) and New Zealand (bottom half)

E U BL BR BP m � d � �A �R �P �A fw gL BIC ΔBIC R2

S
R2

N
pA.S.S.

✓ ✓ ✓ ✓ 10.2 0.6 4.6 2.6 9 10.6 1.5 10.3 0.2 73811 0 0.49 0.22 0.32

✓ ✓ ✓ 10.4 0.7 2.7 4.8 8.6 10 11.1 0.1 76083 2272 0.44 0.16 0.35

✓ ✓ ✓ 8.1 0.7 4.4 4.5 9 12 12 0.2 77783 3972 0.38 0.18 0.36

✓ ✓ ✓ ✓ 8.1 1 5.4 3.1 8.9 11.6 0.9 11.8 0.2 78153 4342 0.43 0.19 0.37

✓ ✓ 7.5 1 7.2 9 12 11 83162 9351 0.54 0.3 0.47

✓ ✓ ✓ 12.1 4.2 5.5 0.5 0.2 1.5 0.3 83644 9833 0.14 0.07 0

✓ ✓ 6 1 4.4 2.7 0.4 0.2 0.3 83729 9918 0.14 0.08 0

✓ ✓ 6 1 7.3 9 12 10.9 87028 13217 0.5 0.23 0.33

✓ 19.8 1 4.7 0.7 0.2 89557 15746 0.16 0.12 0

✓ 9.5 0.8 3.3 6.8 103765 29953 0 0.01 0

✓ ✓ ✓ ✓ 6.6 0 0.3 3.5 1.7 2.2 0.3 2.3 0.2 0.4 4322 0 0.47 0.41 0.28

✓ ✓ ✓ 6.2 0 0.3 3.5 1.7 2.2 2.3 0.2 0.4 4322 0 0.47 0.41 0.29

✓ ✓ 8.9 0.3 0.3 6.8 1.1 0.3 0.6 0.2 4644 322 0.27 0.32 0

✓ ✓ ✓ 8.9 0 0.2 3.6 0.8 0.2 0.5 0.3 0.2 4737 415 0.24 0.31 0

✓ ✓ 12.8 0 0.2 5.8 2.4 2.1 4803 482 0.55 0.36 0.44

✓ ✓ ✓ 6 0 0.3 3.8 1.7 4.5 1 0 0.4 5053 731 0.13 0.13 0.05

✓ ✓ ✓ ✓ 8.2 0 0.3 4 1.7 5.8 0.5 1 0 0.3 5110 788 0.21 0.14 0.04

✓ 6 0.3 0.2 1.2 0.2 5296 974 0.2 0.21 0

✓ 13.5 0 0.2 6.9 0.1 5438 1116 0.07 0.11 0

✓ ✓ 6.6 0 0.3 1.8 0.6 0 5487 1165 0.14 0.13 0.08

Check marks denote whether models include environmental factors (E), urchin grazing (U), local-scale behaviour feedbacks (B
L
), reef-scale behaviour feedbacks 

(B
R
) and predator avoidance (B

P
). pA.S.S. denotes the proportion of observations for which each model predicts alternative stable states. ΔBIC denotes BIC 

difference compared to the best-fitting model in each region. R2 columns denote squared correlation between observed and predicted reef states (R2

S
) and kelp 

density (R2

N
). Covariate units are metres for Z

q
, and L

q
, E

s
 and P

s
 are proportions of their region-specific maximum values. See Appendix E for model-fitting details 

and sensitivity.
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(Table 1, Figures 3, 5). Second, our best-supported mod-
els predict that behavioural feedbacks alone can create 
alternative stable states. Whenever localised pulse distur-
bances affect plant abundance (e.g. kelp loss in storms, 
Cavanaugh et al., 2011), this dynamic can produce per-
sistent patterning in communities with spatially homo-
geneous environments and grazer densities. This extends 
results found in spatially heterogeneous systems, which 
show that behaviour can mediate boundaries between 
community states (e.g. grazing halos, Burkholder et al., 
2013; Madin et al., 2019; Matassa & Trussell, 2011) but 
leave open the question of whether behaviour feedbacks 
generate patchiness de novo in uniform environments.

While our results are built around temperate rocky 
reef systems, the Type IV functional response in urchin 
grazing behaviour we include here can arise from the 
commonly observed phenomena of starvation-induced 
consumption at low resource densities or group de-
fence at high resource densities. Starvation-induced 
active urchin grazing might create persistent patterns 
observed in California because, after overgrazing kelp, 
urchins can survive for decades with little food due 
to low metabolic costs (Filbee-Dexter & Scheibling, 
2014; Ling et al., 2015). In other grazer taxa, however, 

starvation might not create persistent patterns if high 
metabolic costs cause starvation-induced mortality or 
grazers emigrate to higher resource areas, and declin-
ing grazer densities allow eventual resource recovery. 
Group defence can arise through resource behaviour 
when prey forms schools or herds or, alternatively, 
through consumer behaviour when herbivores avoid 
increased predation risk (Fortin et al., 2005) or envi-
ronmental stress (Konar, 2000) in dense vegetation. 
Persistent patterning of sparse and abundant resources, 
as in New Zealand reefs, can then arise when prey or 
plants in high-density patches exhibit group defence 
that shifts predation or herbivory to locations where 
resources are sparse (Schneider & Kefi, 2016). As with 
our spatial model, Type IV functional responses from 
either factor can lead to alternative stable consumer- or 
resource-dominated states in a suite of spatially implicit 
models where consumer density depends on resource 
availability (Bate & Hilker, 2014; Koen-Alonso, 2007). 
Therefore, in addition to expanding empirical support 
for Type IV functional responses, our model suggests 
that Type IV functional responses might warrant explo-
ration in other consumer–resource systems as a driver 
of spatial patterning.

F I G U R E  3   Behavioural feedbacks best explain observed patterns by predicting alternative stable kelp- and urchin-dominated states 
under moderate urchin densities. Here behavioural feedbacks occur through a decline in grazing rate at high kelp densities, as might occur 
through a shift from active to passive grazing. (a, b) Kelp density predicted by best-fitting models without behaviour (red lines) and models with 
behaviour (black lines) for simulations with initially high (solid lines) and initially low kelp densities (dashed lines; without behaviour, identical 
to the solid line). Note the comparison of local kelp densities in (a) and reef-scale kelp densities in (b), reflecting the region-specific scale of 
feedbacks in our best-fitting models (Table 1). (c, d) Average difference in log likelihood between models with and without behaviour. Note 
that lines in (a, b) denote deterministic equilibria under average environments; lower or higher levels of predators, visibility and wave stress in 
specific samples broaden the range of urchin densities at which models with behaviour predict alternative stable states and outperform models 
without behaviour
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Community patterning on temperate rocky reefs

While we fit models to New Zealand and California 
data, our findings can inform the drivers of community 
patterns in temperate rocky reefs globally. Mosaics 
separating urchin- and kelp-dominated depth zones 
found in New Zealand (Figures 1, 4b, 5c) also occur in 
other systems dominated by sub-canopy kelp species, 
including northern Chile (Vásquez & Buschmann, 1997), 
South Africa, (Ling et al., 2015) and Nova Scotia (Dayton, 
1985a). Compared to canopy-forming kelp, sub-canopy 
kelp might reduce long-distance drift subsidies through 
lower total biomass (here, 0.05  kg m−2 in NZ vs. 2  kg 
m−2 in CA; Shears & Babcock, 2004; Cavanaugh et al., 
2011) but increase short-distance urchin deterrence (e.g. 
‘whiplash’, sheltering predators) as plants concentrate 
biomass near the bottom. Ubiquitous depth gradients 
in wave stress might also affect sub-canopy kelp more 
strongly than canopy-forming kelp because sub-canopy 
species can inhabit more exposed (<2  m) depths while 

simultaneously being largely sheltered from wave stress 
in deeper (>10 m) areas. However, kelp-urchin zonation 
may be reversed with barrens forming in deeper habitats 
when urchins are more sensitive to wave action than kelp 
(e.g. Chile, Nova Scotia; Dayton, 1985a, b).

Large drift subsidies from canopy-forming kelp mod-
elled here could underlie reef-scale grazing feedbacks 
and patchiness along the North American west coast. 
However, we expect behaviour-driven patchiness to be 
less prevalent where grazing has weaker effects on kelp 
due to greater storm disturbance (e.g. central California, 
Cavanaugh et al., 2011), heat stress (southern and Baja 
California, Bell et al., 2018), urchin disease (Lafferty, 
2004) and predator densities (e.g. marine protected areas, 
Hamilton & Caselle, 2015). Similarly, on Macrocystis-
dominated reefs of central Chile, urchins rely primar-
ily on passive grazing (Vásquez et al., 1984) but in other 
areas can form barrens. A second reef-scale feedback 
that can contribute to reef-scale forests and barrens 
arises when kelp facilitates the recruitment of urchin 

F I G U R E  4   Regional differences in kelp distribution are best explained by a smaller scale of behavioural feedbacks and stronger wave stress 
gradients in New Zealand (a, b) compared to California (c, d). (a, c) Patterns in observed kelp density across depths on each reef (y-axes) and 
across reefs with increasing average urchin density. (b, d) Kelp densities predicted by best-fitting models in each region, with secondary y-axes 
denoting the best-fit, depth-dependent estimates of mortality induced by wave stress. Grey dots in (a, c) denote the sample coverage across 
these conditions, with kelp density interpolated using 2-d splines. Hashed boxes in (b, d) denote conditions for which best-fitting models predict 
alternative stable states with kelp present or absent

(a) (b)

(c) (d)
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predators (Karatayev & Baskett, 2020), which freely for-
age across entire reefs (Topping et al., 2005). Our results 
highlight that behaviour might strengthen this feedback 
in both regions as predators deter active grazing, comple-
menting analogous findings in California (Caselle et al., 
2018; Ebeling et al., 1985). Altogether, our results suggest 
that large-scale patchiness in systems characterised by 
canopy-forming kelp could arise from shifts in feeding 
modality among already-present urchins rather than ur-
chin density changes via recruitment pulses and die-offs.

Model assumptions

To avoid model over-fitting, our approach leaves out ad-
ditional potential dynamics that might drive alternative 
stable states and therefore patterning in temperate rocky 
reefs. First, we do not consider competition among pri-
mary producers which might displace competitively infe-
rior juvenile stages of Ecklonia and Macrocystis, although  
<10% of samples indicate competitive exclusion by lacking 
both kelp and urchins (Figure 1). Second, in our focus on 
whether or not behaviour can explain observed patterns, 

we ignore many additional feedbacks hypothesised to 
drive (alone or in combination) alternative stable states in 
kelp forests (Ling et al., 2015). These additional feedbacks 
could increase the potential for patchiness. Furthermore, 
we assume kelp abundance correlates with drift kelp that 
drives reef-scale grazing feedbacks; future biomass data 
may allow more mechanistic models of grazing. Finally, 
seasonality in wave-induced mortality (predominantly in 
winter) and recruitment (predominantly in spring) might 
weaken our assumption that kelp abundance reaches 
steady state within a year. Seasonal transients can ob-
scure distinct equilibria (Mumby et al., 2013) and cause 
under-estimation of alternative stable states.

We also omit several secondary urchin behaviours 
that in both regions can increase the role of behavioural 
feedbacks in particular. Available data likely underesti-
mate California urchin densities because cryptic urchins 
are harder to detect, causing best-fit models to under-
estimate the role of behaviour in limiting grazing. Our 
model also omits urchin movement across the reef in 
response to kelp density, which can produce moving or 
stationary grazing fronts (Silliman et al., 2013) and in 
New Zealand might explain higher urchin densities in 

F I G U R E  5   Best-fitting models with behavioural feedbacks predict alternative stable states that span a fraction of each reef in New Zealand 
(a) and entire reefs in California (b). (a, b) Frequency of kelp presence across reef predicted by best-fitting models without behaviour (red lines) 
and models with behaviour (black lines) for simulations with initially high (solid lines) and initially low kelp densities (dashed lines, identical 
to the solid line in the model without behaviour). Blue dots show frequencies of kelp presence across all samples on each reef, with different 
dots representing different reefs and (in b) reefs in different years. (c, d) Sizes of barren and forested patches in data (yellow) and in best-fitting 
models without (red) and with (blue) behaviour, with most patch sizes in California exceeding 100 m due to limited spatial extent of sampling. 
R

2

pres
 in (c, d) is the squared correlation between predicted and observed kelp presence (Table 1)

(a) (b)

(c) (d)
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shallower areas. However, how kelp affects urchin move-
ment in New Zealand remains unclear because barrens 
do not expand following regular Eklonia senescence 
pulses. Given the strong role of behaviour in community 
patterning found here, we suggest future experiments 
and more detailed spatial models explore the drivers of 
urchin movement.

Detection of alternative stable states

Behavioural feedbacks drive patchy spatial patterning in 
our best-supported models by giving rise to alternative 
stable states. Therefore, our results support the relevance 
of this phenomenon across both regions, especially in 
California where large-scale feedbacks can produce 
alternative stable states spanning entire reefs (Figure 5b). 
In New Zealand, the localised scale of feedbacks limits 
alternative stable states to reef depths with intermediate 
wave stress on kelp (Figure 4). These localised states 
average out to produce a gradual reef-wide response to 
changes in urchin density and little dependence of reef 
state on initial kelp abundance (Figure 5a). This result 
supports existing theory (van Nes & Scheffer, 2005) 
predicting greater relevance of alternative stable states 
at ecosystem scales either in spatially homogeneous 
environments or when biological feedbacks span large 
scales by involving mobile matter (e.g. drift kelp) or 
organisms.

The region-specific scales of alternative stable states 
found here can also help explain the debated presence of 
this phenomenon on temperate rocky reefs. Empirically 
demonstrating alternative stable states is challenging 
because of the limited spatiotemporal scales of exper-
imental manipulations and measurements of biologi-
cal feedbacks (Petraitis & Dudgeon, 2004). Our results 
suggest one explanation for this debate: that the scale 
of alternative stable states is system-dependent. Future 
studies can estimate the potential scale of alternative sta-
ble states by quantifying the smallest observed areas of 
each state or the spatial scale of underlying ecological 
feedbacks.

Our analysis additionally expands on previous ap-
proaches to detecting alternative stable states. Studies 
most commonly test for this phenomenon based on 
whether distinct ecological states (e.g. Figure 5b) or 
initial-condition dependency occur under the same 
levels of an environmental driver (Mumby et al., 2013; 
Petraitis, 2013) by pooling observations or experiments 
across space or time. However, environmental heteroge-
neity may obscure distinct stable states (Mumby et al., 
2013): for instance our best-fit models predict that kelp 
densities in forested states double from 5 to 10m depths 
(Figure 4b). Fitting dynamical models to time series can 
explicitly account for the expected effects of environmen-
tal variation (e.g. Ives et al., 2008), but requires long-term 
monitoring data. Instead, here we fit model steady states 

to data from large spatial surveys. Our analysis capital-
ises on time scale differences between kelp abundance 
and comparatively slow changes in the environment and 
urchin abundance, a feature utilised in previous kelp-
urchin studies (Ling et al., 2015). We caution that this 
approach may produce biased interaction estimates by 
assuming population densities are independent among 
years. This approach additionally assumes that ecologi-
cal interactions not modelled or measured explicitly vary 
little across locations and time; such variation can be ac-
counted for using hierarchical modelling and model av-
eraging techniques (Bolker, 2008). Altogether, our work 
highlights how combining spatial surveys, mechanistic 
models and statistics could predict the likelihood, given 
the uncertainty and variable environments, that alterna-
tive stable states underlie observed ecological patterns.
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Appendix A: Dataset and covariates

We use survey data collected in New Zealand during the 1999-2000 winter growing season
(Shears & Babcock 2004). For California, we use data collected in both the National Park
Service Kelp Forest Monitoring survey (5644 samples, 1996-2017, ‘KFM’ hereafter; Kushner
et al. 2013), which samples a wide range of years and collects many samples at each location,
and the Partnership for the Interdisciplinary Studies of Coastal Oceans survey (9311 samples,
1999-2017, ‘PISCO’ hereafter; Casselle et al. 2015), which samples a greater number of reefs
and a gradient of depths at each reef.

Adult kelp densities in New Zealand were sampled in 1m2 quadrats stratified by water
depth. In California, kelp counts were sampled in either 20m2 areas (PISCO swath surveys)
or in 5m2 quadrats (KFM); for KFM data we pooled data from adjacent quadrats to yeild
kelp counts at the 20m2 scale. The difference in sampling scale across regions reflects the
20-fold lower densities of Macrocystis pyrifera in CA compared to Ecklonia radiata in NZ
(Fig. 1). Analogously to New Zealand data, KFM surveys counted the abundance of > 1m
tall adult M. pyrifera (plants with haptera at or above the primary dichotomy, Kushner
et al. 2013). Based on KFM ‘Natural Habitat Size Frequency’ data for each reef and year,
we found that the frequency of adults among > 1m tall M. pyrifera was best approximated
by the frequency of > 1m tall plants with > 5 stipes 1m above the bottom (R2 = 0.57).
Using this conversion, we determined the abundance of adult M. pyrifera in PISCO surveys,
which quantified the number of stipes on each > 1 m tall M. pyrifera but did not classify
plant life stage.

Urchin densities were quantified in stratified 1m2 quadrats (NZ), 20m2 areas (PISCO
swath surveys) or in 1m2 quadrats (KFM). In all studies, density estimates represent urchins
of sufficient size to consume kelp (≥ 25mm test diameter). As KFM surveys counted urchins
of all sizes, we multiplied densities in KFM samples by the (species-specific) fraction of
individuals ≥ 25mm in size-frequency data on ≥ 30 randomly selected individuals at each reef
(‘Natural Habitat Size Frequencies’, Kushner et al. 2013). Additionally, as with kelp counts,
for KFM data we averaged urchin densities among adjacent quadrats to estimate density (ind
m−2) at the 20m2 scale. Finally, we pooled urchin density across purple (Strongylocentrotus
purpuratus) and red (Mesocentrotus franciscanus) sea urchins in California samples.

In New Zealand, we omitted samples dominated by wave-tolerant brown algae which
were not included in our model but can displace Ecklonia and sparse urchins from shallow
areas. To systematically exclude these samples, we first identified samples dominated by
brown algae (> 20 individuals, < 2 urchins, and < 5 Ecklonia, but results were not sensitive
to these thresholds). To identify the depth extent of brown algal dominance, on each reef we
calculated the 80th quantile of depths for samples dominated by brown algae. To account for

1



the possibility that intense urchin grazing can exclude brown algae even from shallow areas,
we fit a generalized additive model relating the depth extent of brown algal dominance to
site-level urchin density using splines. This model predicted that brown algae are restricted
to shallower depths at sites with more urchins. We then excluded the 228 samples where our
model predicted brown algal dominance from our analysis (Fig. S1).

Figure S1: Depth extent of dominance by wave-tolerant brown algae (y-axis) on reefs in New
Zealand (points) across sites with increasing urchin density (x-axis). Fitted curve represents
a best-fit spline model, with dotted lines denoting model standard error. Shaded area denotes
depths and site-level urchin densities at which samples were excluded from analysis.

For New Zealand, we determine predator density as the sum of snapper (Pagrus auratus)
and lobster (Jasus edwardsii) densities estimated at the approximate time of kelp and urchin
density surveys (Kelly et al. 2000; Willis et al. 2003; Shears et al. 2008). At KFM reefs in
California, we determined predator density as the sum of sheephead (Semicossyphus pulcher)
densities recored in Fish Visual Transects and sunflower seastar (Pycnopodia helianthoides)
and spiny lobster (Panulirus interruptus) measured in 12 60m2 Band Transects (Kushner
et al. 2013). At PISCO reefs in California, predator density is the sum of sheephead densities
in fish visual surveys covering 120m2 (480m3 volume) and lobster and seastar densities in
swath samples spanning 260m2 areas (mean swath area across reefs and years). Given greater
sampling uncertainty in density (i.e., greater coefficient of variance) and their larger time
scale of population dynamics compared with kelp and urchins, we smooth reef-scale predator
densities at each site in California using a 3-year running average across sampling years.

We quantify the fraction of surface light reaching the bottom in each sample q at depth
Zq using reef-specific secchi depth measurements Ds as exp(−1.7D−1

s Zq). In New Zealand,
wave stress Es predominantly arises from waves generated by wind; we therefore use an
index of potential wind fetch (Bekkby et al. 2008) as the proxy for wave stress. In Califor-
nia, kelp biomass can greatly depend on maximum wave height (Bell et al. 2015), but this
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environmental driver depends on both wind, coastal currents, and local reef topography. As
a proxy for Es we therefore use estimates of reef- and year-specific maximum wave height
from (Lafferty et al. 2019), which calibrates maximum wave height estimates from regional
oceanographic models using near-bottom sensors at each survey reef.

1.1 Effects of nitrate limitation

In California, large temperature variation driven by upwelling can cause nitrate depletion
at high water temperatures (in New Zealand, lower peak temperatures rarely deplete nitrate).
Nitrate limitation can reduce growth and total kelp biomass (not modeled here) as well as
kelp fecundity (Bell et al. 2018). We include reef- and year-specific nitrate availability Gs

estimated in Bell et al. 2018 from ocean temperature (projected locally using calibrated ocean
circulation models) and observed relations of nitrate depletion with increasing temperatures.
We modeled a decline in fecundity at low Gs using a function that saturates to 1 at high
nitrate levels given saturation constant v, and change eqn. 1 to

r(Nq, Ns) =
mGs

1 + vGs

(γNs + (1 − γ)Nq). (S1)

Adding nitrate to our models including environment, urchin grazing, and urchin behavior
did not improve the fit of our best model based on BIC.

1.2 CA spatial patterning visualization

To illustrate spatial patterns of community states in Fig. 1d, we use satellite observations
of kelp in 2016, during higher urchin densities were observed at all monitoring sites in the
region (Fig. 1d, arrows). We classified all areas with kelp as forested and classified all areas
without kelp in 2016 but where satellite imagery detected kelp in previous years as barren. To
a limited extent this approach may over-estimate the spatial extent of barrens, for instance if
storms cause kelp loss in some locations or as water currents temporarily push plants closer
to the bottom, making detection more difficult. However, we do not expect such factors to
affect patterning qualitatively (e.g., depth-independent patchiness).
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Table S1: Model parameters fitted to data in each region and model covariates. Covariates
are given by environmental data and parameters are estimated in model fitting. Covari-
ates without units are set as proportions of region-specific maximum values to standardize
parameter constraints.

Parameter Units Description

m yr−1 Adult kelp fecundity
σR Standard deviation in recruit survival, fixed σR = 0.35
γ Fraction of kelp spores dispersing across reef
gL Contribution of measured light availability to recruitment
d N−1 Kelp competition for light inhibiting recruitment
µ yr−1 Kelp mortality from wave stress
fw m−1 Per-meter wave energy dissipation
δA U−1yr−1 Max grazing rate on adult kelp
δR U−1yr−1 Max grazing rate on kelp recruits
Γ N−1 Urchin grazing saturation constant
ξA N−2 Grazing inhibition by adult kelp
ξP Grazing inhibition by predators

Covariate Units Description

Zq m Sample depth
Lq Local light availability at bottom
Uq ind m−2 Local > 25mm urchin density
Es Reef-scale wave stress
Gs Reef-scale nitrate availability (CA only)
Ps Reef-scale urchin predator density

Appendix B: Behavioral declines in urchin grazing due

to predators

Predators could affect grazing through both direct effects on urchin density (numerical
effect) and indirect effects through changes in urchin grazing behavior (grazing activity ef-
fect); our model in the main text focuses on the latter. Examining the potential magnitude
of numerical predator effects on urchins, we found that predator densities explain only a
fraction of among-reef variation in urchin densities (averaged over all quadrats on each reef
and sampling year, R2 =0.22, p<< 0.001, n=1267, Fig. S2a). Remarkably, the decline in

4



urchin densities happened with only a small increase in predator densities (0 to 0.02 ind
m−2), while further increases in predator density (0.02 to 0.15 ind m−2) had no effect on
urchin density. Declines in urchin density over low predator densities only might also be
explained by a strong urchin behavioral response where urchins are cryptic and harder to
detect (i.e., quadrat samples under-estimating true densities) at sites where predators are
present. To verify our density analysis, we examined whether predation reduced average size
of urchins (test diameter of urchins < 70mm) found in quadrats along transects compared to
urchins found in cages that largely exclude urchin predators (‘Artificial Recruitment Mod-
ules’, 5-15 permanent 5x12 cm mesh cages at each of 12 KFM monitoring sites). Overall,
predator density poorly explained the difference in urchin size between quadrats and exclo-
sures (R2 =0.12, p=0.0005, n=211, Fig. S2b), and urchins in exclosures did not have larger
sizes at sites with high predator densities.

In New Zealand, large within-season changes in urchin density due to predation are un-
likely because most sampled urchins were large and long-lived (Shears and Babcock 2004).
Taken together, these results indicate that predators have only a limited direct, top-down
effect on urchin densities. This reflects previous findings that predator presence strongly
drives cryptic urchin behavior and reduced grazing activity and the fact that urchins com-
prise only a fraction (10-30%) of urchin predator diets. Note that, while predators could
conceivably have species-specific effects on urchin predator avoidance δU (e.g., greater for
slower-moving seastars), previous statistical analyses of patterns in the California Channel
Islands did not detect species-specific δU (Caselle et al. 2018). We therefore approximate
predator avoidance as dependent on total predator density only.

We additionally verify that data on kelp abundance (which reflects both total urchin
abundance and per capita grazing activity) can distinguish the direct negative effects of
predators on urchin density from indirect negative effects on urchin grazing activity. For
this we construct a simple dynamical model of logistically growing urchin abundance U
where both mortality and grazing activity G decline with predator density P . As with our
base model, we assume that grazing activity has negligible effects on urchin density and that
predator densities change little on the time scale of urchin population changes, yielding

dU

dt
=rUU(1 − U) − UP (S2)

dG

dt
=UδA exp(−PξP ). (S3)

We then numerically solve this model for total grazing activity U at steady state (after 50-
year transient) across levels of P in data (Fig. S4b) and the range of ξP estimates in our
best-fit models. We find that predator avoidance (ξP > 0) distinctively reduces total urchin
grazing compared to when grazing depends on urchin density only (Fig. S4c).
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Figure S2: (a) Urchin densities correspond weakly with reef-scale predator densities and are
characterized by lower urchin densities where predators occur, (b) mean sizes of 0-70mm
urchins in predator exclosures rarely exceed mean urchin sizes outside predator exclosures,
and (c) urchin grazing at steady-state without (δU = 0) and with (δU > 0) declines in
urchin grazing activity with predator density. Blue lines in (a, b) denote best-fitting splines
of predator density effects on each variable. Note that smaller urchin sizes in exclosures
(negative values in b) at sites with few predators might arise from competition because
urchin densities in exclosures were 1-2 fold greater compared to outside exclosures at all
sites.

Appendix C: Role of herbivory dilution in patterning

Here we test whether herbivory dilution, a common behavior-independent kelp-density
feedback (Noy-Meir 1975), can be an alternative explanation for observed kelp patterning.
For this we evaluate models with a Type II functional response where grazing saturates with
adult kelp density by a factor Γ, yielding an updated equation for recruit survival

S∗
R(Nq, Nx) =

ΩR(1 − gL + gLLq − dNq)

1 + δRUq(1 + ΓNq)−1
(S4)

and adult mortality from grazing

ν∗A(Nx) =
δAUq

1 + ΓNq

. (S5)

In fitting these models, we set the minimum constraint on δA to 0.01. We find that best-
fitting models with behavior greatly outperformed models with grazing saturation in both
regions (∆BIC> 100, Table S2).
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Table S2: Results of model fitting and model comparison in California (bottom half) and
New Zealand (top half) for models that include a Type II saturating grazing functional
response and no behavior (i.e., assuming no subsidies, predator avoidance, abrasion, etc).
∆BIC denotes difference in fit compared to best-fitting models in each region in Table 1.

E U m γ d µ δA δR ξP ξA Γ fw gL BIC ∆BIC R2
S pA.S.S.

X X 11.6 0.8 4.6 2.9 9 12 9.1 0 85316 11504 0.12 0.11
X 6 1 8 9 12 8.4 92453 18642 0.25 0.16

X X 6.3 0 0.3 2.8 2.6 2.1 2.3 0.6 0.4 4528 206 0.43 0.21
X 6.8 0 0.2 4.6 2.1 2.3 4933 611 0.43 0.29

Appendix D: Convergence deviations of fitted models

Here we determine the deviation of kelp abundance from model steady states after sim-
ulating population dynamics for a single year. We quantify these deviations for each model
under the best-fit parameter set and across all initial conditions and realizations of juvenile
survival stochasticity ΩR (Table S3). In our best-supported models, kelp density approaches
close to steady state within a single year in nearly all samples (kelp density difference of
99% in NZ, 93% in CA in samples with kelp; Fig. S3) and in most samples approaches close
to steady state during the growing season (i.e., in ≤ 5 months, 98% in NZ, 83% in CA).
All other fitted models analogously approach close to steady state within a year (Table S3).
Greater deviations from equilibrium kelp abundance in California compared to New Zealand
arise because the best-fit models in California assume strong coupling of kelp population
dynamics across each reef by spore dispersal. This coupling among locations by recruitment
leads to longer transient dynamics.
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Figure S3: Within-year dynamics of kelp density (averaged over the entire reef) projected in
best-supported models in California (a) and New Zealand (b). Trajectories in each system
show dynamics from high (black lines) and low (red lines) initial kelp density for 3 (randomly
selected) reefs with no alternative stable states predicted (solid lines), which converge on the
same density, and 3 reefs with alternative stable states predicted (dashed lines).

Table S3: Mean and median deviation of kelp abundance from model steady states after
simulating population dynamics for a single year, across all models fitted for New Zealand
(top rows) and California (bottom rows). Relative (“Rel.” in table) deviations denote abso-
lute deviations scaled by median kelp abundance in each region (4 in NZ, 0.2 in CA). Model
nomenclature follows Table 1.

E U BL BR BP Mean Deviation Mean Rel. Deviation Median Rel. Deviation
X X X X 0.03 0.01 0
X X X 0.1 0.03 0
X X 0.05 0.01 0
X 0.01 0 0

X X 0.14 0.03 0
X 0.11 0.03 0
X X 0.13 0.03 0

X X X X 0.03 0.13 0.01
X X X X 0.03 0.14 0.01

X X 0.02 0.08 0
X X 0.02 0.11 0

X X X 0.04 0.18 0.06
X 0 0.02 0
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Appendix E: Model-fitting details and sensitivity

5.1 Parameter constraints

We use several parameter constraints to ensure biologically plausible parameter fits (Table
S4). We allow a level of urchin grazing on kelp recruits δR on par with levels of kelp population
growth to reflect how low densities of urchins can prevent kelp recovery Ling et al. (2015).
We set the maximum of grazing on adult kelp δA to be lower than that for δR because
recruits are more vulnerable to urchin grazing than adults, which would require urchins to
graze on stipes for kelp mortality to occur (Anderson et al. 1997). In New Zealand, we
constrained maximum grazing inhibition by kelp to reflect that, due to their smaller size
compared to Macrocystis, subcanopy kelp plants may be unable to deter urchin grazing
fronts (Silliman et al. 2013), except possibly at high kelp densities. Finally, for wave stress
dissipation fw in California and grazing inhibition by predators ξP in both regions, we
found that large maximum constraints encompassed local likelihood maxima that prevented
optimizer convergence to better-fitting and biologically realistic parameters. To avoid these
local maxima, we ran preliminary fits spanning a range of maximum parameter constraints
on fw and ξP and selected the weakest constraints (i.e., greatest possible maximum values)
that permitted the best model fit. The resulting constrains on maximum grazing deterrence
by site-level predator densities were lower in New Zealand compared to California, possibly
reflecting that in NZ predators aggregate in dense kelp stands within each reef.

Table S4: Parameter constraints used in model-fitting. All parameters not listed were con-
strained only to positive values or proportions.

Parameter Region Min Initial Max Reference

m both 6 8 20 Baskett et al. 2007
γ NZ 0 0 0.3 Itou et al. 2002

1/d CA 0.1 0.125 0.5 20th (min) and 80th (max) quantiles of
1/d NZ 1 2 6.7 regional kelp density in samples with kelp
µ both 0.001 1 7 Cavanaugh et al. 2011
δA both 0.25 2 9 see text
δR both 0.25 10 12 see text

log ξA NZ 0 3 see text
ξP CA 0 0.15 1.5 Shears et al. 2008; fitted, see text
ξP NZ 0 0.15 0.6 Shears et al. 2008; fitted, see text
fw CA 0 0 0.001 fitted, see text

5.2 Trends in model fit

Parsing the log likelihood of our best-fitting models across samples in each region, we
find relatively consistent trends in model fit across space, time, and covariates, with two
exceptions (Fig. S4). First, model fit worsens for sites farther west in the California Channel
Islands; we attribute this trend to known environmental gradients that can change species
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interactions (Bonaviri et al. 2017) and the magnitude of environmental extremes. Second,
in both regions model fit worsens at low urchin densities. As the more important driver of
kelp density in both regions compared to environment (Table 1), low urchin densities often
allowed kelp to reach carrying capacity in models. In data, however, peak kelp densities
spanned a wide range of values across different sites (CA: 0.3-1.2 ind m−2, NZ: 4-16 ind
m−2, ranges of 90th quantiles of kelp density across all samples with kelp at each site).
We attribute this variation, and therefore reduced model fit at low urchin density, to site-
specific environmental features not captured in our dataset (e.g., substrate composition or
complexity). Note that reduced fit at low urchin density is also the likely explanation for
changes in fit across light and wave stress in New Zealand due to the fact that, in this region,
low urchin densities occurred at greater depths that corresponded to higher kelp densities,
lower wave stress, and lower light availability.

Figure S4: Trends in sample-specific log likelihood of best-fitting models in each region
across years (a, CA only), space (b, c), and individual covariates (d-k). Y-axes denote the
log likelihood of kelp density observed in each sample (i.e., as in our main analysis but
before summing log likelihood over all observations in each region). In all panels, blue lines
denote smoothed trends in sample-specific log likelihood and gray bars denote the relative
distribution of samples across space, time, and covariates. Note that the spatial distribution
of samples falls predominantly on an East-West orientation in California (spanning strong
East-West environmental gradients in the Channel Islands; Kushner et al. 2013) and on a
North-South orientation in New Zealand (Shears & Babcock 2004).
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5.3 Spatiotemporal covariate autocorrelation and site effects

To verify that environmental autocorrelation does not qualitatively affect our results,
we first calculate temporal and spatial autocorrelation for California data. Across site-level
kelp densities and model covariates, these analyses show generally low (< 0.5) correlation
even among adjacent sites and consecutive years (Fig. S5) with the exception of wave stress,
which shows region-wide synchrony. To verify the robustness of our qualitative results on
the importance of processes to temporal autocorrelation in California, we re-fit models to
subsets of the full dataset that omit consecutive years from data at each site (i.e., using
data from every other year, approximately 60% of CA observations). Model ranking in this
analysis (Table S5) was analogous to that using the full dataset (Table 1). An exception to
this result is that models with behavior via kelp-density feedbacks and predator avoidance
perform worse than models with behavior via kelp-density feedbacks only. This might arise
because most of the data omitted in this analysis come from long-term KFM monitoring
sites, many of which are located in marine reserves.

To verify that site-specific features do not substantially skew our results, we re-fit models
in both regions 20 sub-sets of our full dataset, each of which randomly selects 70% of all sites
used in our base model fitting (we did not omit a larger portion of data to ensure models
remained estimable). Across these replicate fits, models with kelp-density feedbacks in urchin
behavior outperformed the best-fitting models without behavior (in 19 out of 20 replicate
fits in CA and in all replicate fits in NZ). We also found relatively consistent parameter
estimates across replicate fits (Table S6).

Figure S5: Correlation in site-level kelp densities and model covariates across years (a) and
space (b-f) in California. Spatial autocorrelations are calculated using all sites with ≤ 5 years
of data but omit comparisons between reefs which face opposite island faces (i.e., southern
vs. northern) and therefore can experience distinctive oceanographic environments. In (b-f)
blue lines denote smoothed running averages and axes are spaced on a log scale.
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Table S5: Results of model fitting and model comparison in California omitting consecutive
years from data at each site (i.e., using data from every other year, approximately 60% of
CA observations).

E U BL BR BP m γ d µ δA δR ξP ξA fw gL BIC ∆BIC

X X X 9.5 1 4.6 2.6 8.9 11.7 10.7 0.2 41807 0
X X X X 9.5 1 4.7 2.6 8.8 11.6 10.7 0.1 41914 107
X X X X 10.2 1 4.9 2.6 8.8 11.8 11.4 0.1 42090 283
X X X 10.3 1 5.3 3.5 8.9 11.7 11.8 0.1 45150 3342

X X 6.1 1 7.3 9 11.9 10.9 46449 4642
X X 6.5 1 4.2 3.5 0.4 0.2 0.3 46893 5085

X X 6 1 7.3 9 12 10.8 47276 5468
X X X 18.8 1 5.7 7 0.9 0.2 1.4 0.4 47557 5749

X 18.7 1 5.1 0.7 0.2 50662 8854
X 11.3 1 4.8 5.9 60442 18635

Table S6: Standard deviations of fitted parameters across 20 replicate data sub-sets in
California (bottom half) and New Zealand (top half). Each sub-set omits 30% of randomly
selected sites in each region.

E U BL BR BP m γ d µ δA δR ξP ξA fw gL

X X X X 1.2 0.1 0.6 1.2 0.2 0.2 0.5 0.3 0.1
X X X 1.4 0.1 0.5 1.3 0.2 0.2 0.4 0.1
X X X 0.9 0.3 1 1.4 0.4 1.1 0.6 0.1
X X X X 1 0.4 1 1.4 0.2 0.7 0.6 0.6 0.1
X X X 3.3 0.1 0.9 1.3 0.1 0 0 0.1

X X 0.6 0.2 0.5 0 0.5 0.8 0.2
X X 3.1 0 0.7 1.3 0.1 0 0.1

X X 0.8 0.1 0.1 0 0.4 1.2 0.1
X 1 0 0.2 0 0.1 0

X 1.7 0.1 0.5 0.3

X X X 1.7 0 0 0.6 1.9 2.8 0.3 0 0.1
X X X X 1.8 0 0 0.6 1.9 3.2 0.1 0.4 0 0.1

X X 4 0 0 1.3 2.6 0.4
X X X 2.9 0.1 0.1 2.1 0.3 0.7 0.1 0.2 0.2

X 4.8 0 0 0.2 0.3
X X 3.1 0.1 0.1 1.8 0.1 0.8 0.2 0.2
X X X 3.6 0.1 0 1.7 1.7 4.1 1.4 0.1 0.1
X X X X 3.7 0.1 0 1.7 1.4 4.6 0.2 1.2 0.2 0

X X 0 0 0 1.2 0 0.7
X 2.3 0.1 0 1.9 0
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5.4 Species-specific urchin grazing in California

Our density-based approach to measuring urchin grazing does not account for the po-
tential for larger urchins to graze at a higher rate (Stevenson et al. 2016). This could be a
particular issue in California, where red urchins are substantially larger than purple urchins.
Although we did not have data on the sizes of each urchin in our study, we explore the ex-
tent to which higher grazing rates by red urchins could affect our results. For this analysis,
we first calculated the mean sizes of red and purple urchins measured at monitoring sites,
converted urchin sizes to individual biomass and then to individual grazing rates following
relations for M. franciscanus in Stevenson et al. (2016). We then calculated the ratios of per
capita red versus purple urchin (size-based) grazing rates at each site and averaged these
values across to arrive at a total estimate of ≈2.27-fold higher grazing rate for red compared
to purple urchins. Using this ratio, we calculated a new index of grazing intensity U∗

q = (#
purple urchins in sample q) + 2.27(# red urchins in sample q); for consistency of parameter
estimates, we scaled U∗

q to have the same average value as Uq in our main analysis. Re-
fitting our best models with and without behavior with using U∗

q (Table S7), we find that
accounting for higher grazing rates by red urchins does not affect model ranking but appears
to reduce model fit compared to urchin density-based fits.

Table S7: Results of model-fitting with tests for sensitivity to species-specific urchin grazing
in California (top rows), kelp recruitment stochasticity in California (middle rows), and kelp
recruitment stochasticity in New Zealand (bottom rows).

Test E U BL BR BP m γ d µ δA δR ξP ξA fw gL BIC pA.S.S.

U spp. X X X X 10.7 1 4.6 5.1 8.4 11.7 1.1 11.7 0.2 79273 0.32
U spp. X X X 11.1 1 5.5 6.2 8.8 8 11.7 0.3 81869 0.3
U spp. X X X 13.2 0.8 4.4 6.5 0.4 0.2 1.5 0.3 83178 0

σR=0.45 X X X X 9.7 0.3 2.8 4.7 8.8 9.8 1.3 11 0.1 67995 0.27
σR=0.45 X X X 10.2 1 2.6 4.8 0.4 0.2 1.5 0.1 74133 0
σR=0.25 X X X X 10.2 1 5.4 1.4 9 11.9 1.4 10.8 0.1 80016 0.36
σR=0.25 X X X 14.2 1 5.7 4.3 0.6 0.2 1.3 0.3 88007 0

σR=0.45 X X X X 13.3 0 0.3 1.9 2.9 6.7 2.4 0.8 0.4 4665 0.37
σR=0.45 X X X 17.7 0 0.4 2.7 0.6 1 0.5 0.8 0.3 5743 0
σR=0.25 X X X X 14.3 0 0.3 2 5.3 5 0.5 2.9 0.7 0.2 4578 0.38
σR=0.25 X X X 16.2 0.3 0.2 7 0.7 1.7 0.5 0.8 0.1 5006 0

5.5 Effects of recruitment stochasticity

To evaluate the sensitivity of model ranking to the magnitude of stochasticity in kelp
recruitment σR, we re-fit our best-fitting models with and without kelp-density feedbacks in
urchin behavior with σR 30% higher and 30% lower than the base value used in our main
analysis. Across both σR values and regions, models with kelp-density behavior feedbacks
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outperformed models without these feedbacks (Table S7). Parameter estimates were also
generally similar to those in our main analysis (Table 1) with the exception of kelp compe-
tition d: with increasing σR best-fitting models estimate lower kelp competition to explain
high kelp densities observed at some sites. This trend arises from our use of a lognormal
distribution, where greater variation leads to a greater proportion of realizations with poor
recruitment conditions.
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