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Significance

 Desynchronized population 
fluctuations promote 
metapopulation stability. We 
proposed data-driven methods 
to differentiate between three 
different synchrony-reducing 
mechanisms and applied them 
to species in two different marine 
ecosystems. We find that 
ecological dynamics vary greatly 
among locations, which reduces 
synchrony and underpins stability 
for many species in the California 
Current. In contrast, environmental 
gradients primarily prevent 
synchrony on the Northeast U.S. 
Shelf. Simulations show that 
metapopulations in both 
ecosystems should maintain 
stability as extreme environmental 
events increase in frequency and 
spatial extent. As climate change 
flattens environmental gradients, 
however, synchrony and the 
frequency of large-scale 
population crashes may increase 
for many species. Thus, knowing 
synchrony-reducing mechanisms 
and future environmental trends 
can help identify vulnerable 
species whose future stability 
might be compromised.

This article is a PNAS Direct Submission O.N.B. is a guest 
editor invited by the Editorial Board.

Copyright © 2024 the Author(s). Published by PNAS. 
This article is distributed under Creative Commons 
Attribution-NonCommercial-NoDerivatives License 4.0 
(CC BY-NC-ND).

Although PNAS asks authors to adhere to United Nations 
naming conventions for maps (https://www.un.org/
geospatial/mapsgeo), our policy is to publish maps as 
provided by the authors.
1To whom correspondence may be addressed. Email: 
vadimk@umd.edu.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2404155121/-/DCSupplemental.

Published December 30, 2024.

POPULATION BIOLOGY

Climate change could amplify weak synchrony in large marine 
ecosystems
Vadim A. Karatayeva,b,c,1 , Stephan B. Munchd,e , Tanya L. Rogersd , and Daniel C. Reumanb,c

Affiliations are included on p. 7.

Edited by Ottar N. Bjørnstad, The Pennsylvania State University, University Park, PA; received March 12, 2024; accepted October 27, 2024 by  
Editorial Board Member Pablo A. Marquet

Climate change is increasing the frequency of large-scale, extreme environmental events and 
flattening environmental gradients. Whether such changes will cause spatially synchronous, 
large-scale population declines depends on mechanisms that limit metapopulation synchrony, 
thereby promoting rescue effects and stability. Using long-term data and empirical dynamic 
models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity 
in environmental responses, and environmental gradients to assess their role in inhibiting 
synchrony across 36 marine fish and invertebrate species. Overall, spatial heterogeneity in 
population dynamics was as important as environmental drivers in explaining population 
variation. This heterogeneity leads to weak synchrony in the California Current Ecosystem, 
where populations exhibit diverse responses to shared, large-scale environmental change. 
In contrast, in the Northeast U.S. Shelf Ecosystem, gradients in average environmental 
conditions among locations, filtered through nonlinear environmental response curves, limit 
synchrony. Simulations predict that environmental gradients and response diversity will 
continue to inhibit synchrony even if large-scale environmental extremes become common. 
However, if environmental gradients weaken, synchrony and periods of large-scale population 
decline may rise sharply among commercially important species on the Northeast Shelf. Our 
approach thus allows ecologists to 1) quantify how differences among local communities 
underpin landscape-scale resilience and 2) identify the kinds of future climatic changes most 
likely to amplify synchrony and erode species stability.

synchrony | environmental gradients | time-delay embedding | empirical dynamic models |  
spatial dynamics

 A striking feature in ecosystems is the tendency for populations to grow and fall in unison 
across large geographic areas ( 1 ). Studies utilizing long time series have revealed that 
ecological synchrony typically arises from synchrony in environmental conditions that 
drive population fluctuations (called “Moran effects”; refs.  2  and  3 ). Moran effects have 
been shown to produce widespread synchrony in a diverse array of taxa ( 4   – 6 ) and are 
increasing with climate change in several systems (reviewed in ref.  7 ). Importantly, syn-
chrony can delay or prevent metapopulation recovery when periods of low abundance 
coincide across locations, leaving few abundant populations to seed overall recovery 
through rescue effects ( 8   – 10 ). In this sense, mechanisms that inhibit synchrony contribute 
to resilience and stability of spatially extended systems.

 In most metapopulations, synchrony remains limited in strength, routinely being far 
lower than synchrony in putative environmental drivers (e.g., refs.  11  and  12 ); reviewed in 
ref.  13 ). Here, we identify three mechanisms that can inhibit Moran effects and ask whether 
they will persist under climate change. The first is demographic response diversity , in which 
populations grow differently in response to local abundance ( Fig. 1A  ; we abbreviate response 
diversity with RD). For example, populations without Allee effects may recover from a heat 
wave faster. Although spatial variation in traits underlying demographic processes is ubiq-
uitous [e.g., heterogeneity in lifespan ( 14 ) or growth rate ( 15 )], demographic RD has been 
quantified only in a handful of taxa (e.g., ref.  1 ), most frequently as variation in carrying 
capacity. The second mechanism is environmental response diversity , in which populations 
differ in their response to environmental conditions ( Fig. 1B  ). A heat wave, for instance, 
more severely impacts populations that lack thermal refugia or local adaptation to high 
temperatures. Although environmental RD appears widespread (e.g., refs.  16  and  17 ), few 
studies quantify its emergent impacts on spatial population dynamics and synchrony. The 
third mechanism is environmental gradients , i.e., differences in mean environmental condi-
tions among populations. If the population response to environment is unimodal and an 
environmental gradient is present, synchronous changes in the environment can generate 
opposing responses in different populations even if there is no environmental RD ( Fig. 1C  ). D
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For instance, a +5 °C temperature change might cause mortality in 
equatorial populations by exceeding thermal tolerances, while ben-
efiting poleward populations. However, the roles of RD and envi-
ronmental gradients in population dynamics have not been 
quantified and the mechanisms mediating population synchrony 
in the field remain largely unknown.        

 Critically, the dominant mechanism can determine how a spe-
cies responds to climate change. In systems where environmental 
gradients inhibit Moran effects, ecological synchrony and 
large-scale population declines may rise as climate change flattens 
those gradients. Temperature gradients, for instance, are flattening 
globally as northern latitudes ( 18 ) and higher elevations ( 19 ) warm 
faster than southern latitudes and lower elevations, respectively. 
Moreover, population synchrony may increase due to the growing 
frequency of extreme environmental events ( 20     – 23 ). This may 
occur either because extreme events span large areas, in effect 
increasing environmental synchrony, or because populations 
decline more strongly under severe conditions, in effect over-
whelming RD. Thus, anticipating climate change impacts on 
synchrony requires a shift in research, from describing synchrony 
﻿patterns , toward a data-driven understanding of synchrony mech-
anisms  and how they shape spatial population dynamics.

 If we had a well-vetted, data-driven, spatial population model, 
we could evaluate demographic RD as heterogeneity in density 
dependence across populations, environmental RD as heteroge-
neity in environment dependence, and ask whether populations 
respond nonlinearly to environmental drivers with gradients 
( Fig. 1 ). Unfortunately, experimentally resolving how dynamics 
vary across populations is not feasible in most systems. Fortunately, 
empirical dynamic models (EDMs) can infer population dynamics 
from time series without specifying the underlying equations a 
priori. Here, we resolve how population dynamics vary among 
populations by combining spatially hierarchical EDMs with sur-
vey data from two large marine ecosystems: the California Current 
and the Northeast U.S. Continental Shelf (“CA Current” and 
“NE Shelf ” hereafter;  Fig. 2A   and SI Appendix, Table S1 ). For 
this, we compiled data spanning 40 to 48 y, 800 to 1,000 km of 
coastline, 11 putative environmental drivers, and 36 fish and 
invertebrate species. While many of these species currently have 
low synchrony ( Fig. 2B  ), whether this stability will continue is 
unknown as both systems face large climatic changes ( 20 ,  24 ,  25 ).        

 Here, we show that spatial EDMs effectively predict observed 
synchrony and variation in population abundance. Next, by 

removing (or allowing) spatial differences in demographic RD 
and/or environmental RD and by removing (or allowing) envi-
ronmental gradients, we quantify how each mechanism reduces 
metapopulation synchrony and contributes to model fit in each 
species. We specifically compare six nested model formulations: 
SDEG  (all three mechanisms present); SDeg  (demographic RD only); 
SdEg  (environmental RD only); SdeG  (gradients only); Sdeg  (no 
mechanisms present); and Sd- -  (no environmental drivers and no 
demographic RD). Simulating the best-fitting models under 
altered environmental scenarios, we then show that potential cli-
mate change can alter synchrony, and therefore stability, on large 
spatial scales, in distinct but predictable ways depending on the 
aspect of climate change that one considers. 

Results

 We first evaluate the relevance of environmental drivers and RD 
in general for predicting population dynamics. Unsurprisingly, 
the environment has a large influence: including environmental 
predictors increases out-of-sample  −R2    (average leave-one-out R2  
value across species) from 0.21 in models with density dependence 
only (Sd- - ) to 0.37 (SdeG ;  Fig. 3B  ). Relevant drivers were chosen 
for each species via model selection: at least one ocean climate 
index was selected for all species, and temperature, upwelling, and/
or zooplankton were also selected for 78% of species (SI Appendix, 
Table S2 ). Although not a physical driver, we used zooplankton 
as a likely proxy of local environmental productivity ( 26 ). We note 
that our models allow interactions between environmental drivers; 
preliminary models that allowed interactions between density and 
environment did not improve fit, and we thus model density- and 
environment- dependence additively ( Fig. 1 ).        

 Response diversity (RD) appears as important as environment 
for predicting population dynamics ( Fig. 3B  ): allowing for demo-
graphic and environmental RD in addition to environmental 
drivers further increases  −R2    to 0.49 (SDEG ;  Fig. 3B  ). For several 
species, drivers such as ocean climate have different effects in dif-
ferent populations (e.g.,  Fig. 3 C  and D  ). Note that this is likely 
an underestimate of the importance of RD, as data selection for 
the NE Shelf species intentionally omitted populations with qual-
itatively different dynamics, usually located at range boundaries 
(SI Appendix, Fig. S1  and Methods ), often characterized by steady 
declines or increases that may reflect ongoing range shifts ( 27 ). 
Critically, our full models incorporating all synchrony-reducing 

A: B: C:

Fig. 1.   Three mechanisms may explain why metapopulation synchrony is far lower than synchrony in environmental drivers. (A) Demographic RD through spatial 
heterogeneity in density dependence Fi can cause population-specific responses to an environmentally driven decline in population density (pink arrow); here, 
population 2 recovers more slowly. (B) Environmental RD through spatial heterogeneity in environment dependence Gi can cause the impacts of environmental 
change to differ qualitatively between populations; here, population 2 is negatively impacted due to lacking access to thermal refugia. (C) Gradients in mean 
local environment and nonlinear responses to environment (here, a unimodal thermal response curve) can also create population-specific responses: Here, 
a +5 °C anomaly benefits population 1, which experiences lower average temperatures, but exceeds thermal tolerances in population 2, which experiences 
higher average temperatures.
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mechanisms (SDEG ) explain nearly half of the variation in popu-
lation dynamics on average and attain a level of model-predicted 
synchrony close to that of data (0.35 predicted vs. 0.26 observed, 
medians across species).

 We next compare how each of the three potential mechanisms 
explains dynamics and reduces Moran effects ( Fig. 4 A  and B  ). 
Specifically, we quantify how scenarios with demographic RD (SDeg ), 
environmental RD (SdEg ), gradients (SdeG ), and all three mechanisms 
(SDEG ) increase model fit and reduce model-predicted synchrony 
compared to a baseline scenario with no mechanisms present (Sdeg ). 
We remove environmental gradients by subtracting the local mean 
from environmental data in each location, and then refitting and 
iterating models on these environmental data without gradients (see 
﻿Methods  and SI Appendix, Appendix D  for details).        

 Environmental RD primarily reduces synchrony in California, 
while environmental gradients primarily reduce synchrony on the 
NE Shelf ( Fig. 4A  ). Accordingly, these mechanisms play a large 
role in improving model fit in their respective regions ( Fig. 4B  ). 
Environmental gradients in California and demographic RD on 
the NE Shelf play secondary roles in improving model fit and 
reducing synchrony. We also find that when mechanisms co-occur, 
they reduce synchrony subadditively. In 12 out of 36 species, we 
detected multiple mechanisms that each reduced synchrony by 
>0.1 when modeled individually (SI Appendix, Table S2 ). Across 
these 12 species, median predicted synchrony was 0.85 in models 
with no mechanisms, 0.32 in models with a single mechanism, 
and 0.28 in models with multiple mechanisms. In other words, 
the presence of a single mechanism reduces synchrony nearly as 
much as the presence of multiple mechanisms.

 The fact that gradients are stronger overall on the NE Shelf than 
in California ( Fig. 3A  ) potentially explains their greater influence 
in this ecosystem. However, gradient strength depends not only 
on system but also on which set of environmental drivers primarily 
influence a particular species (as determined by model selection; 
﻿SI Appendix, Table S2 ). Across species, stronger gradients are asso-
ciated with reduced synchrony ( Fig. 4C  , R2  = 0.27, P  = 0.004), 
although the slope of this relation is significantly negative only 
for gradient magnitudes <12%.

 We explore three ways in which climate change might affect syn-
chrony and the frequency of large-scale population declines. One 
pathway is extreme environmental events ( 28 ,  29 ): If synchronous 
drivers strongly impact organisms, they may overwhelm existing 
mechanisms that prevent synchrony. An intense heat wave, for 
instance, may exceed thermal thresholds in populations both with 
and without refugia from heat. Second, climate change may erode 
synchrony-reducing mechanisms themselves, for instance, if the loss 
of local adaptation to rapidly changing conditions reduces RD. A 

A

B

Fig. 2.   Population synchrony is much lower than synchrony in environmental 
drivers across 36 species in two large marine ecosystems. (A) Study regions and 
centroids of locations by which survey data were aggregated; for Dungeness 
crab, points are port locations. (B) Average observed synchrony (defined as 
correlation at 350 km) for environmental drivers and species populations; we 
show synchrony for all species and for subsets of taxonomically related species 
that occur in both systems (Herrings denote Clupeiformes; see SI Appendix, 
Table S2 for a list of species in each subset). Synchrony is evaluated for the 
environmental drivers included in the best-fitting models for each species 
(SI Appendix, Table S2).

A B C

D

Fig. 3.   Both ecosystems exhibit strong environmental gradients and demographic and environmental RD. (A) Latitudinal trends in mean environmental conditions 
in each ecosystem. (B) Performance of models incorporating no environmental drivers or RD (black, scenario Sd--), environmental drivers and no RD (green, 
scenario SGed), or both environmental drivers and RD to demography and environment (pink, scenario SGED). Curves are distributions of model R2 across 36 
species; dotted lines and −R2 values denote the means of each distribution. (C and D) Examples of RD to three drivers in models of two species, with different 
lines corresponding to different populations.D
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third pathway is weakening latitudinal temperature gradients ( 18 ), 
which is also flattening gradients in zooplankton ( 24 ,  30 ) as warming, 
stratification, and declines in epilimnion nutrients are disproportion-
ately greater in northern latitudes ( 18 ,  31 ). To evaluate these possible 
pathways, we simulate our best-fit models under i) an increase in 
extreme event frequency and spatial extent that reflects predicted 
increases in heat waves, mean temperature, and ocean climate varia-
bility (Methods ), ii) a loss of response diversity, and iii) a loss of envi-
ronmental gradients.

 In both regions, we find that existing mechanisms can prevent 
high metapopulation synchrony even when environmental extremes 
become more common ( Fig. 5A  ). By contrast, and regardless of 
extreme event frequency, synchrony in both regions strongly 
increases with the loss of gradients or RD. Greater synchrony in 
turn corresponds to lower stability and more frequent periods of 
low projected region-wide density (measured as the 10th quantile 
of regional density;  Fig. 5B  ). The largest increases in synchrony and 
declines in stability arise when more frequent extreme events coin-
cide with the loss of gradients ( Fig. 5 C  and D  ). This effect is greater 
in species influenced by larger gradients, highlighting how climate 
change impacts may vary by species. In all treatments, we find little 
to no change in mean population density (SI Appendix, Fig. S4C﻿ ), 
meaning that more frequent large-scale declines arise from a loss 
of metapopulation stability.          

Discussion

 We quantify the relative importance of mechanisms that reduce 
population synchrony relative to the synchrony of environmental 
drivers, and hence promote stability, across taxa in two marine 
systems. Our results reveal that environmental RD and environ-
mental gradients can greatly reduce population synchrony. The 
primacy of these mechanisms varied by region, reflecting the 
stronger gradients present on the NE Shelf, but also depended on 
taxa. For instance, the reduction of synchrony by gradients pre-
viously found for Atlantic blue crabs ( 13 ) occurs in a variety of 
other species and depends on the extent to which environmental 
drivers with gradients impact a species’ dynamics. This variation 
also explains observed synchrony differences across taxa ( Fig. 2B  ).

 More frequent, larger-scale extreme environmental events by 
themselves are unlikely to impact species’ regional stability ( Fig. 5 ). 
Instead, synchrony and the frequency of large-scale declines will 
increase if climate change erodes environmental gradients or RD. 
This risk varies across species ( Fig. 5D   and SI Appendix, Table S2 ), 
underscoring previous findings that system-wide climate changes 
can have species-specific impacts ( 27 ). We also point out that the 
impacts of increased synchrony within our study species may cas-
cade to higher trophic levels as mobile predators and fisheries cannot 
compensate for periods of resource depletion by moving to alternate 
locations (i.e., a loss of spatial portfolio effects). Altogether, our 
results demonstrate that without an understanding of spatial pop-
ulation dynamics, projections of environmental change alone tell 
us little about the stability of species and natural resources.

 Our general results support findings of species-specific terrestrial 
studies. For gradients, Hagen et al. ( 32 ) found reduced synchrony 
across elevational temperature gradients in a moth metapopulation 
driven by regional climate. This indicates that our results for latitu-
dinal gradients can also explain low synchrony at finer spatial scales. 
Previous studies that quantified demographic RD as spatial variation 
in intrinsic population growth and carrying capacity ( 12 ,  33 ,  34 ) 
also found that demographic RD has a limited impact on metapo-
pulation synchrony. Simultaneously, metapopulation synchrony in 
these studies was low and similar to synchrony in our systems [e.g., 
mean correlation at 300 km = 0.30 in our study; 0.27 for six insect 
species in ref.  12 ; 0.25 for blue and great tits ( 34 ); 0.03 for cormo-
rants ( 33 )]. We therefore suggest that environmental gradients and 
environmental RD might inhibit synchrony in these other systems.

 Several strategic management insights also come from our results. 
First, we find that temperature affects the dynamics of only a frac-
tion of species (33%), while local productivity (zooplankton) was 
a more ubiquitous predictor (80% of species). This highlights that 
warming may primarily impact fisheries only through its potential 
indirect effects on productivity. Second, in our simulations, extreme 
events increase synchrony primarily by spanning large areas (i.e., by 
increasing environmental synchrony) rather than by making histor-
ically rare, extreme conditions more frequent (SI Appendix, Fig. S4 ). 
Both results are in line with recent work showing that population 
die-offs in response to marine heat waves currently appear rare 

A B C

Fig. 4.   Environmental RD in California and environmental gradients in the NE Shelf are the primary mechanisms that reduce synchrony, and gradient magnitude 
explains synchrony differences among taxa. (A and B) Decrease in predicted synchrony and increase in model fit when different synchrony-reducing mechanisms 
are incorporated (Demographic RD = SDeg, Gradients = SdeG, Environmental RD = SdEg, All = SDEG) relative to a model with no mechanisms present (Sdeg; see SI Appendix, 
Appendix D for model details). Bars show median and distribution of values across 36 species in California (blue) and the NE Shelf (gray). (C) Relationship between 
observed synchrony and environmental gradient magnitude (averaged across environmental predictors selected for each species). Line is a best-fit spline across 
species, with blue (black) portions denoting a slope found to be significantly (not significantly) different from zero and the gray area denoting 95% CI of the mean. 
Larger points in (C) correspond to species with larger geographic extent and for which gradient magnitude is better resolved.
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globally ( 35 ). Third, we identified 24 species that have no or only 
one synchrony-reducing mechanism (SI Appendix, Table S2 ) and, 
in turn, may be vulnerable to increased metapopulation-wide 
declines. In limited preliminary analyses, we did not find a relation 
between the number of mechanisms and species taxonomy.

 Low demographic RD and high environmental RD ( Fig. 4B  ) 
also suggest steps for improving population models used in fisheries 
management. Whether and how to model spatial variation in pop-
ulation dynamics is a common source of debate in stock assessment 
models. Our results suggest that for many species, demographic 
processes may be similar across large areas, but there may be local 
differences in responses to the environment. Future assessments can 
readily quantify the importance of demographic and environmental 
RD using EDM, while fundamental research could disentangle 
whether environmental RD arises from heterogeneity in habitat, 
community composition, or local adaptation.

 Several factors may affect our results. First, observation error 
could bias estimates of synchrony and, potentially, estimates of 
demographic RD. Future work could account for this using new 

state-space EDM methods that account for observation error ( 36 ). 
Observation error may explain why observed synchrony is less 
than predicted synchrony, although our methods account for var-
iability in sample timing (SI Appendix, Appendix A ). Second, a 
portion of the observed synchrony may be caused by mobile pred-
ators or dispersal. As EDM implicitly accounts for dispersal via 
time lags, our simulations are therefore unable to account for 
changes in mobile predators and dispersal. We note that dispersal 
in marine systems typically happens in early (larval) life stages, 
and the effect of larval supply on adult biomass is often weak. In 
line with this, spatial extensions of EDM found little impact of 
dispersal on dynamics in the NE Shelf ( 37 ). Third, our analysis 
may underestimate the role of gradients in reducing synchrony 
because spatially uniform ocean climate indices were often selected 
as important predictors. While climate indices themselves lack a 
gradient, they represent a collection of spatially heterogeneous 
processes such as nutrient transport and productivity. Future anal-
yses incorporating a larger collection of spatially resolved predic-
tors may refine our results and help resolve mechanisms.

A

C D

B

Fig. 5.   Climate change is likely to increase synchrony and large-scale population declines by eroding synchrony-reducing mechanisms rather than by increasing 
extreme environmental events. (A and B) In EDM projections across 36 species, synchrony and large-scale declines increase to a greater extent when synchrony-
reducing mechanisms are lost (orange bars) than when environmental extremes increase in frequency and spatial extent (hashed bars). Green bars are values 
for observed data. (C and D) Change in projected synchrony and large-scale declines with increased extremes and the loss of gradients. Points are plotted 
vs. environmental gradient magnitude; larger points correspond to species with larger geographic extent. ‘Gradients and RD lost’ simulations in A and B are 
projections of models without RD (scenarios SdeG); all other results are projections of the full models (scenarios SGED).
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 While climate change is unlikely to eliminate RD or gradients 
entirely, as simulated, our study provides bounds on possible sce-
narios. As climate change impacts on individuals and the environ-
ment become better resolved, simulations under more realistic 
environmental projections could be used to identify vulnerable 
species whose future stability might be compromised. Improved 
model fits and predictions for individual species might also be 
attained using more species-tailored environmental drivers. Although 
our dataset has insufficient sample size to draw conclusions about 
patterns in individual taxa, differences in synchrony-reducing mech-
anisms across different taxonomic groups could also be explored in 
future work. 

Unifying Population and Landscape Dynamics. Our approach 
advances mechanism-focused synchrony research by quantifying 
multiple synchrony-reducing mechanisms and how they act 
in concert. Critically, our nonparametric approach does not 
assume a parametric model (e.g., logistic dynamics) or a specific 
(and often unknown) population response to environment. 
We demonstrate that ecological dynamics vary greatly across 
populations and that the resulting response diversity underpins 
landscape stability. As such, this work complements experimental 
approaches that quantify resilience at the scale of individuals 
(e.g., thermal tolerance thresholds) but is rarely feasible at 
metapopulation scales.

 More generally, our approach pairing long-term data with hier-
archical EDMs can detect how nonlinear species’ density depend-
ence, responses to environment, and species interactions differ 
among local communities. Thus, future studies applying hierar-
chical EDMs to long-term data can directly quantify how ecolog-
ical interactions and population dynamics depend on local 
environment and community composition. Finally, classical views 
contend that while “black-box” models excel at prediction, para-
metric models are the principal path to inferring mechanisms. 
Although it is true that EDM can outperform parametric models 
in forecasting ( 38 ), our study is one of many recent demonstra-
tions ( 13 ,  39 ,  40 ) that appropriately constrained phenomenolog-
ical models can reveal ecological mechanisms. We suggest that 
EDMs form a key link in scaling up our understanding from 
simple models to large and complex ecosystems.   

Methods

Long-Term Data. We developed an annual dataset of 36 marine fish and inver-
tebrate species by combining data from several spatially extensive, long-term 
surveys (SI Appendix, Table S1). These “species” included three larger taxonomic 
groups (shrimp, krill, and pelagic juvenile rockfishes). For most species, data 
spanned at least 10 degrees of latitude and were aggregated into one degree 
latitude bins (“locations” or “populations” throughout, Fig. 2A). Density data were 
log-transformed and normalized within locations. We combined biological survey 
data with data on 11 candidate environmental drivers (listed in SI Appendix, 
Table S2), which included winter and summer sea surface temperatures, zooplank-
ton biomass, upwelling, and ocean climate indices. See SI Appendix, Appendix A 
for more details on data sources and data processing.

EDM Model Framework. To model population dynamics, we predict abun-
dance changes based on past changes that occurred when the system was in 
a similar state. This approach effectively “reconstructs” population dynamics 
from time series (41) and works for nonautonomous systems with long-term 
change (42). In particular, we model log abundance of population i in year t, 
Xi,t, using the vector of lagged log population densities at times t − L to t − 1,  
X i,t =

{

Xi,t−1,...Xi,t−L
}

 and the vector of p different environmental drivers 

E i,t =

{

E1
i,t−1

, ⋯ E1
i,t−L

, ⋯ , E
p

i,t−1
, ⋯ , E

p

i,t−L

}

 . We model dynamics as an addi-

tive combination of density dependence Fi
(

X i,t

)

 and environment-dependence 

Gi (E i,t ) , such that Xi,t = Fi
(

X i,t

)

+ Gi (E i,t ) . This allows us to separately resolve 
demographic RD (spatial heterogeneity in Fi) and environmental RD (hetero-
geneity in Gi).

For each species, we fit models in two stages. We first fit a model with lags of den-

sity, Xi,t = Fi
(

X i,t

)

 and computed the out-of-sample residuals xi,t = Xi,t − F̂i (X i,t ) , 

where F̂i (X i,t ) is the map constructed by leaving out the (i, t)th observation. We 
then fit a model to the residuals using lags of the environment, xi,t = Gi

(

E i,t

)

 . 
Importantly, reversing the fitting order [i.e., fitting Gi (E i,t ) and then Fi

(

X i,t

)

 ] does 
not affect our qualitative results (SI Appendix, Appendix D). Out of sample pre-

dictions for the full model were then X̂ i,t = F̂ i
(

X i,t

)

+ Ĝi

(

E i,t

)

 , where Ĝi is also 

computed leaving out the (i, t)th point.
Not knowing the functional forms of our model a priori, we estimated the 

nonlinear functions Fi and Gi using hierarchical Bayesian Gaussian process (GP) 
regression as implemented in the GPEDM package (43). The hierarchical structure 
allows for heterogeneity in these functions across populations. To prevent overfit-
ting, we set a prior with a mode of 0 on the importance of all lag predictors so that 
those which do not improve fit are effectively omitted (44, 45); see SI Appendix, 
Appendix B for more details on our hierarchical GP approach.

Model Selection and Analysis. We evaluated model performance using leave-
one-out (LOO) out-of-sample R2 = 1 −

∑

�

Xi,t−X̂i,t

�2

∕

∑

(Xi,t−Xi,t)
2 . For each spe-

cies, we fit models with the number of lags L ranging from 1 to 6 and selected 
the model with the L value that produced the highest R2. In cases where a lower 
L produced a similar R2

L [i.e., R2
L > 0.9 × maxd(R2

d), d ∈ 1: L ], we selected the 
more parsimonious model. More details on model selection, including selection 
of environmental drivers, is provided in SI Appendix, Appendix C.

To quantify the strength of environmental gradients relevant to a given spe-
cies (Figs.  4C and 5 C and D), we first scaled each driver to the interval (0,1) 
across all populations and calculated the mean (across time) of each retained 

driver p and each population i, Ep
i

 . We then calculated gradient magnitude 

Mp
= (maxiE

p

i
− miniE

p

i
)∕D , where D is the maximum distance between pop-

ulations for the species, and averaged Mp across all drivers. Finally, we analyzed the 
relation between average M and observed synchrony across species (Fig. 4C) by 
fitting a spline in mgcv and analyzing its slope using tsgam packages (46).

Throughout, we quantified synchrony as the expected Pearson correlation in log 
density between populations 350 km apart. This corrects for substantial variation 
in the geographic range of modeled species after data filtering (350 to 1,700 km).  
We chose 350 km because the metapopulations we modeled exceeded this 
distance in all but one species. We estimated synchrony using the ncf package 
(47), which fits a spline to the pairwise correlation between populations as 
a function of distance and then evaluated the spline at 350 km. To robustly 
evaluate predicted synchrony in models, we ran 1,000 simulations from each 
fitted EDM using permutations of the observed (“historical”) environmental 
conditions (Figs. 4 A and C and 5). For each year and species, we set environ-
mental values (or global mean-centered environmental values, for models 
without gradients) equal to those observed in a randomly selected year. We 
then simulate abundance by iterating the model year-by-year, using abun-
dance predicted for one year to predict abundance in the following L years 
and measure synchrony in these simulations. In SI Appendix, Appendix D, we 
show that accounting for temporal autocorrelation in the environment had 
little impact on all our results.

Simulating Climate Change. Expected climatic changes in our study systems 
include increased variability in ocean climate indices ENSO (20), NPGO (48), NAO 
(29), an associated increase in heat wave frequency (28, 29), and increased mean 
temperature (2 to 5 °C by 2,100; ref. 49). Ongoing declines in latitudinal tempera-
ture gradients are also expected to continue (18), and the productivity gradient on 
the NE Shelf (Fig. 2A) is expected to flatten as zooplankton biomass declines dis-
proportionately in the Gulf of Maine (24, 30). To explore the strategic implications 
of these changes for metapopulation synchrony, we first calculated the mean of 
each environmental driver p in each population i under historic conditions, Ep

i
 , and 

deviations from these means, Ep
i,t
∗

= E
p

i,t
− E

p

i
 . Next, we generated a set of 1,000-y 

permuted “historical” conditions as described above and randomly chose 40% of 
years to contain extreme events. In an extreme year, for each driver, we randomly D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 "

L
IB

4R
I:

 E
A

W
A

G
-E

M
PA

 , 
SE

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
" 

on
 J

an
ua

ry
 6

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
15

2.
88

.0
.1

71
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2404155121#supplementary-materials


PNAS  2025  Vol. 122  No. 1 e2404155121� https://doi.org/10.1073/pnas.2404155121 7 of 7

choose a single value ̃Ep from the upper 25% or lower 25% of all values Ep
i,t
∗ . We 

then set Ep
i,t

 in all locations to ̃Ep + Epi  in simulations with gradients present and 

to ̃Ep in simulations with gradients absent. Altogether, our approach simulates an 
increase in both the frequency and spatial extent of extreme events. For summer 
and winter temperatures, we sample extreme values only from the upper 10% of 
observations to simulate a conservative level of warming (NE Shelf: +2.3 °C; CA 
Current: +1.5 °C). We simulated models as described above.

Data, Materials, and Software Availability. Previously published data were 
used for this work (refs. 1–3, 5, 7–10, and 12 and reference 19 of the SI Appendix).
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Supporting Information Text 
Appendix A: Data sources and processing. 

Data for California came from 3 sources (Table S1). The Southwest Fisheries Science Center 
(SWFSC) Rockfish Recruitment and Ecosystem Assessment Survey is an annual fixed station midwater 
trawl survey that initially sampled only central California, but was extended to cover the entire California 
coast in 2004 (1). The mean catch per tow was calculated for 5 common species (or species groups) for 
each of the 20 active station lines (areas) located at regular intervals along the coastline. From the 
quarterly California Cooperative Oceanic Fisheries Investigations (CalCOFI) icthyoplankton survey (2,3), 
we obtained data on egg density for 6 coastal pelagic fish species, which approximates adult spawning 
biomass (4). Mean egg density was calculated for 6 areas (boundaries were latitudes 31, 32, 33, 34.5, 
35.5, and 39, with the 33-34.5 latitude bin split into an east and west area at longitude -120). These area 
delineations ensured breaks at Point Conception (a major biogeographic boundary west of Santa 
Barbara) and between the eastern and western Channel Islands (which have very different 
temperatures). We also obtained data on catch (landings) of Dungeness crab in California, Oregon, and 
Washington (5). We summed crab landings for each winter fishing season for each of 19 port areas. 
Since the Dungeness crab fishery harvests a very high percentage of all legal-size male crabs each 
season (6), and crabs are landed live (requiring minimal distance between port and catch location), total 
landings closely reflect nearby population size. 

Data for the NE Shelf came primarily from the Northeast Fisheries Science Center (NEFSC) 
Bottom Trawl Survey, which is a semi-annual stratified random survey extending from North Carolina to 
Maine (7,8). Data were used only through 2008 owing to a significant gear change in 2009. Mean 
biomass per tow for 24 species (Table S1) was calculated from all tows within 1 degree latitude bins (9 
total areas). Finally, we used data on Atlantic blue crab catch per unit effort from 17 different locations 
extending from Florida to Massachusetts. The data come from 12 different state and academic 
institutions; for details see (9).   

Species densities were first transformed as 𝑋!,#∗ = ln	(𝑁!,# + 𝛿), where δ was the minimum positive 
density observed for the species. The NEFSC Bottom Trawl and CalCOFI icthyoplankton surveys were 
also corrected for seasonality since sampling day of year (DOY) varied across years. For this, we fit 
species-specific splines predicting 𝑋!,#∗ as a function of DOY, 𝑋%,#∗+ = 𝑠(𝐷𝑂𝑌!,#) using the R package mgcv, 
and used the residuals of this model fit, 𝑋%,#0 = 𝑋!,#∗ − 𝑋%,#∗+ , in all subsequent analyses. The CalCOFI 
icthyoplankton data were then annualized by averaging the seasonally-corrected quarterly values. For 
each species in each location in all surveys, we subtracted the local mean and divided by the local 
standard deviation. The result is henceforth denoted Xi,t and referred to as “log density”.  

For each species, we next removed locations that were surveyed in fewer than 16 years, and 
locations for which the species was detected in fewer than 9 years. For the NEFSC Bottom Trawl data 
only, we omitted some additional locations based on dynamical dissimilarity (see Appendix C). We 
applied this dynamical-similarity filtering procedure to data from the spring, fall, and both NEFSC survey 
seasons averaged together, and then picked the data (sub)set which yielded the best model fit for each 
species. Following these filters, we modeled dynamics in 7 locations (populations) per species on 
average (Table S2). 

We combined biological survey data with data on 11 candidate environmental drivers (listed in 
Table S2). For all species except Atlantic blue crabs these included the annual-minimum (i.e., winter) and 
annual-maximum (i.e., summer) of monthly mean sea surface temperatures at each location (10,11) and 
log-transformed, seasonally-corrected zooplankton biomass at each location (2,12). We additionally 
included 6 annualized indices of ocean climate and upwelling. Drivers for Atlantic blue crabs included 
summer and winter temperatures, precipitation, and commercial landings (for details and data sources 
see (9)). For each species, environmental data were normalized across locations by subtracting the 
global mean and dividing by the global standard deviation (thus retaining differences in local means, i.e. 
environmental gradients). 
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Appendix B: Hierarchical Gaussian Process model framework 
We provide here a more detailed description of the hierarchical Bayesian Gaussian process (GP) 

model used to estimate the nonlinear functions Fi and Gi in our hierarchical model 𝑋!,# = 𝐹!3𝑿!,#5 +
𝐺!(𝑬!,#). For brevity, let x be a vector of length M and let 𝑓(𝒙) represent one of our unknown functions (i.e. 
𝑓(𝒙) is a placeholder for either 𝐹!(𝑿!,#) or 𝐺!(𝑬!,#)). GPs generalize the multivariate normal distribution to 
function spaces (13) and as such are completely specified by a mean function μ and a covariance 
function Σ, i.e., 𝑓(𝒙)~𝐺𝑃(𝜇, Σ).  We set the prior mean function to μ=0, to represent our ignorance of the 
shape and let the data drive the result. To model the covariance between 𝑓(𝒙) and 𝑓(𝒚) for y another M-
vector, we used a squared exponential with input-specific inverse length scale parameters. Specifically 
𝐶𝑜𝑣3𝑓(𝒙), 𝑓(𝒚)5 = Σ(𝒙, 𝒚) = 	 τ&∏ exp	(−'

()* Φ(|x( − y(|&/𝑟&), where τ2 is the prior variance in 𝑓, and r is 
the range of the data (max(x() − min(x()), used to set the scale. The inverse length scale parameter Φk 
controls the flexibility (stiffness/wiggliness) of the function in the direction of the kth input, with Φk=0 
indicating the kth predictor has no effect. We set a prior on Φk with a mode of 0 so that predictors which do 
not improve fit retain a posterior with Φk≈0, and so are effectively omitted from the model (14,15). For 
details on the Bayesian approach, parameter fitting, and the case of multiple predictors, see (16). 

To resolve heterogeneity in dynamics (demographic or environmental response diversity), we use 
a hierarchical GP formulation that resolves differences in 𝑓(𝒙) across populations i. For this, we partition 
the population-specific function 𝑓!(𝒙!) into shared, μ, and independent, mi, components such that fi=μ+mi, 
where μ~GP(0,C) and mi~GP(0,Σ). Here, the 0 mean in μ denotes our prior assumption of no variation in 
𝑓(𝒙) among populations, and the covariance function 𝐶𝑜𝑣 P𝑓!(𝒙!), 𝑓+3𝒙+5Q = C3𝒙! , 𝒙+5 is defined 
analogously to Σ but with prior variance 𝜎&. In practice, we marginalize over mi to have fi~GP(0,C+Σ), and 
set σ2 = ρD(σ2 + τ2). The fitted dynamic correlation parameter 𝜌, ∈ (0,1) controls the covariance across 
populations, and equates to the correlation between the functions for different populations with respect to 
their inputs, i.e.  𝜌, = 𝐶𝑜𝑟𝑟-3𝑓!(𝒙), 𝑓+(𝒙)5. We set 𝜌, = 1 in models without response diversity and 
specified 𝜌, pairwise in models with response diversity. We computed pairwise values of 𝜌!,+,  by fitting a 
2-population hierarchical model for each pair of populations. 

Appendix C: Data subsetting and model selection 
High dissimilarity in optimal L or Φkj among populations could favor over-simplified (e.g., random 

walk) models that fail to detect relevant environmental drivers and nonlinearities and spatial differences in 
Fi and Gi. Therefore, for each species in the semi-annual NEFSC Bottom Trawl survey only, we used a 
subset of populations based on dynamical similarity using an iterative approach. At every iteration, we fit 
our full model 𝑋!,# = 𝐹!3𝑿!,#5 + 𝐺!(𝑬!,#) with L=6 to data from a specified (sub)set of all populations, 
selected environmental drivers as described below, and measured R2. We first evaluated a model of all 8 
populations. If the R2 of this 8- population hierarchical model was ≤0.35, we evaluated models fit to every 
possible subset of 7 populations. If the R2 of all 7- population models was ≤0.35, we proceeded to smaller 
subsets of the data. When multiple equally-sized sets of populations attained this criterion, we chose the 
set with the highest R2. Our data-filtering omitted on average 47% of populations. Nearly all omitted 
populations were located at either the northernmost (>42) or southernmost (<38) latitudes (Fig. S1), 
where dynamics often exhibited steady population declines or increases that may reflect ongoing range 
shifts (17). For species in all other surveys, hierarchical EDMs attained an R2≥0.35 (Table S2). 

We selected environmental drivers and the number of lags L (also known as the embedding 
dimension) for our models as follows. To increase parsimony, for a given species and number of lags L, 
we omitted all environmental drivers p where maxk(Φkp)<0.35, 𝑘 ∈ 1: 𝐿 in a preliminary full model with all 
drivers. This helps us avoid over-fitting and focus our estimates of environmental gradients, described 
next, on the most important divers (i.e., omitting drivers qualitatively affects only results in Fig. 4c). For 
each species, we repeated this procedure for models with L ranging from 1 to 6 and selected the model 
with the L value that produced the highest R2. In cases where a lower L produced a similar R2L (i.e., 
R2L>0.9*maxd(R2d), 𝑑 ∈ 1: 𝐿), we selected the more parsimonious model. We only considered L≤6 
because most of our species had 30-39 years of observations and L2 observations are generally required 
to characterize an L-dimensional delay embedding space (18,19).  
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Appendix D: Model analysis details and results sensitivity 
Scenario modeling 

Throughout our analysis, we vary model structure to produce scenarios with and without 
demographic response diversity (i.e., heterogeneity in density-dependence, 𝐹!3𝑿!,#5) and with and without 
environmental RD (i.e., heterogeneity in environment-dependence, 𝐺!(𝑬!,#)). We denote scenarios with 
demographic RD using subscripts D (present) or d (absent), and scenarios with environmental RD using 
subscripts E (present) or e (absent). For each of the 4 possible RD scenarios, we also develop scenarios 
with and without environmental gradients by varying the environmental covariates supplied to 𝐺!(𝑬!,#). We 
use subscripts G to denote scenarios where gradients are present in environmental covariates (i.e., 
observed data) and subscripts g to denote scenarios where gradients are removed from environmental 
covariates by subtracting the local environmental mean from each environmental observation. Thus, we 
use SDEG to denote our ‘full model’ scenarios with all 3 mechanisms. Finally, we also fit a model Sd-- that 
has no spatial heterogeneity in dynamics and no environment-dependence.  

In comparing synchrony-reducing mechanisms in Fig. 4, we evaluate two scenarios with 
gradients (SDEG, SdeG) and three scenarios without gradients (SDeg, SdEg, and Sdeg). To evaluate synchrony 
in scenarios without gradients, we fitted models corresponding to SDeG, SdEG, and SdeG, iterated these 
models on data without gradients, and computed synchrony from the predicted time series. To evaluate 
how well models without gradients can explain dynamics, we measure the R2 of models re-fitted to 
environmental data without gradients. In this process, re-fitted models could account for gradients 
implicitly by changing the nonlinearity and heterogeneity of Gi. Therefore, we fix hyperparameters Φkj, σ2, 
τ&, L, and 𝜌!,+,  of Gi to values estimated in analogous models fitted to real environmental data (i.e., 
hyperparameters of Gi in SDeg, SdEg, and Sdeg taken from SDeG, SdEG, and SdeG, respectively).  

Sensitivity analyses 

As a sensitivity analysis of our core model framework, we also considered an approach where we 
first fit 𝐺!(𝑬!,#) to 𝑿!,#, and then fit 𝐹!3𝑿!,#5 to the residuals of 𝐺!(𝑬!,#). Using this approach, our results in 
Fig. S2 parallel results in Figs. 4 and 5.  

Our analyses of metapopulation synchrony under past and altered climate regimes began by 
generating a 1,000-year set of permuted ‘historical’ conditions, which destroyed temporal autocorrelation 
present in environmental data. To test the robustness of our no temporal autocorrelation assumption, we 
created a set of environmental conditions where historic observations of environment were duplicated to 
1,000 years. That is, in a time series of 40 years, the new time series of 𝑬!

.was 
𝑬!,#)*
. , … , 𝑬!,#)/0

. , 𝑬!,#)*
. , … , 𝑬!,#)/0

. , etc. After generating this time series, we implemented environmental 
extremes for altered climate regimes as described in the main text. Accounting for temporal 
autocorrelation in this way did not qualitatively affect our results in Fig. 5 (Fig. S3). 

Our climate change analyses simulate extreme environmental events by assuming that 
environmental conditions are (1) more extreme and (2) span large areas during a year with an extreme 
event. Specifically, to implement more extreme conditions, we draw values of environmental conditions 
from the upper 25% or lower 25% of all historically observed values (upper 15% only for temperature). To 
implement a greater spatial extent of extreme events, we assume all populations experience the same 
anomaly in environmental conditions during an extreme event (i.e., 100% environmental synchrony). To 
disentangle the role of extreme event magnitude and spatial extent, we simulate two additional types of 
extreme events: (i) no increase in magnitude but an increase in spatial extent and (ii) large magnitude but 
no increase in spatial extent. To implement (i), we again assume 100% environmental synchrony during 
an extreme event, but draw values of environmental conditions from the full range of historic values rather 
than only the tails. To implement (ii), for each driver p in an extreme-event year t=k, we first draw one 
value from the tail(s) of the driver’s historic distribution, 𝐸.0 , as in the main analysis. To this value we then 
add the deviation of environmental conditions from their spatial mean observed in a randomly selected 
year j. Thus, 𝐸!,#)1

. = 𝐸.0 +𝐸!,#)+
. − 𝑛2*∑ 𝐸!,#)+

.
! , where n is the number of populations. In these additional 

simulations, we find that extreme environmental events increase population synchrony when extremes 
increase environmental synchrony only but not when extremes increase the magnitude of environmental 
conditions only (Fig. S4).  
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Dataset S1 (separate file). Compiled data used for analyses. Species density and zooplankton volume in 
this data are adjusted for seasonality but not subsetted. NOAA NEFSC data have three different seasons: 
Fall trawl survey data (column season=1), Spring trawl survey data (season=2), or an average of Fall and 
Spring trawl survey results (season=3); data from all other surveys all come from the same sampling 
season (season=0). Due to data sharing limitations, data on Blue Crabs are omitted in this dataset. 

Software S1 (separate file). R code to run analyses. 

 

 
Figure S1. Latitudes of populations removed from the NE Shelf Bottom Trawl survey data due to 
diverging population dynamics. 
 
 

 
Figure S2. Environmental response diversity in California and environmental gradients in the NE 
Shelf primarily reduce synchrony, with gradient magnitude explaining synchrony differences 
among taxa. This figure reproduces Fig. 4a,b and Fig. 5a,b for simulations where effect of environment is 
fitted before the effect of population density. 
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Figure S3. In model projections under increased levels of extreme environmental events, high 
metapopulation synchrony (A) and periods of low regional density (B) arise primarily when 
synchrony-reducing mechanisms are lost. This figure reproduces Fig. 5a-c while accounting for 
temporal autocorrelation. 
 
 
 
 

 
Figure S4. In model projections under increased levels of extreme environmental events, high 
metapopulation synchrony (A) and periods of low regional density (B) arise primarily when 
synchrony-reducing mechanisms are lost and extreme events span large areas, while mean 
population densities change little (C). This figure reproduces Fig. 5a,b with two additional scenarios 
(orange bars): large-scale extreme events that increase environmental synchrony but have historic 
magnitudes (orange, vertically hashed bars) and extreme events that have increased magnitudes but do 
not increase environmental synchrony (orange, horizontally hashed bars). 
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Table S1. Long-term surveys used in this study and associated taxa. NOAA = National Oceanic and 
Atmospheric Administration, YOY = young of the year. 
Source Survey Sampling 

method; 
Units 

Year 
range 

Lat. 
range  
(# 
areas) 

Species 

NOAA 
Southwest 
Fisheries 
Science 
Center 
(SWFSC) 

Rockfish 
Recruitment 
and 
Ecosystem 
Assessment 
Survey 

Midwater 
trawl; 
Individuals 
per tow 

1990-
2019 

32.7-
41.5 
(16) 
 

California market squid (Doryteuthis opalescens), YOY 
Pacific hake (Merluccius productus), YOY rockfish 
(Sebastes spp), Krill (Euphasidae), YOY sanddabs 
(Citharichthys spp) 

California 
Cooperative 
Oceanic 
Fisheries 
Investigations 
(CalCOFI) 

Icthyo-
plankton 
survey (egg 
counts) 

Icthyo-
plankton 
nets; 
Egg 
density 

1980-
2019 

31-39 
(8) 

Northern anchovy (Engraulis mordax), Jack mackerel 
(Trachurus symmetricus), Pacific mackerel 
(Scomber japonicus), Pacific saury (Cololabis saira), 
Pacific sardine (Sardinops sagax) 

Pacific 
Fisheries 
Information 
Network  

Commercial 
landings by 
port 

Fish tickets 
(landing 
receipts);  
Metric tons 

1980-
2018 

32.6-
48.4 
(18) 

Dungeness crab (Metacarcinus magister) 

NOAA 
Northeast 
Fisheries 
Science 
Center 
(NEFSC) 

Fall and 
Spring 
Bottom 
Trawl 
Survey 

Bottom 
trawl; 
Biomass 
per tow 

1977-
2008 

36-44  
(10) 

Fourspot flounder (Hippoglossina oblonga), Yellowtail 
flounder (Limanda ferruginea), Winter flounder 
(Pseudopleuronectes americanus), Atlantic Mackerel 
(Scomber scombrus), Butterfish (Peprilus triacanthus), 
Bluefish (Pomatomus saltatrix), Shrimp (Caridea), Black 
sea bass (Centropristis striata), Scup (Stenotomus 
chrysops), Spiny dogfish (Squalus acanthias), Longhorn 
sculpin (Myoxocephalus octodecemspinosus), Sea raven 
(Hemitripterus americanus), Northern searobin 
(Prionotus carolinus), Fawn cusk-eel (Lepophidium 
profundorum), Clearnose skate (Raja eglanteria), Little 
skate (Leucoraja erinacea), Atlantic Herring (Clupea 
harengus), American Shad (Alosa sapidissima), Sea 
scallop (Placopecten magellanicus), Northern shortfin 
squid (Illex illecebrosus), Longfin squid (Loligo pealeii), 
Silver hake (Merluccius bilinearis), Atlantic cod (Gadus 
morhua), Spotted hake (Urophycis regia) 

Multiple* Multiple Multiple 
(trawl, 
seine, pot) 

1956-
2015 

28-42 
(17) 

Atlantic blue crab (Callinectes sapidus) 

* Massachusetts Division of Marine Fisheries, Univ. of Rhode Island Grad. School of Oceanography, New 
York State Dept. of Environmental Conservation, Connecticut Dept. of Energy and Environmental 
Protection, Rutgers University, Delaware Division of Fish and Wildlife, Maryland Dept. of Natural 
Resources, Virginia Institute of Marine Science, North Carolina Division of Marine Fisheries, South 
Carolina Dept. of Natural Resources, Georgia Dept. of Natural Resources, Florida Fish and Wildlife 
Conservation Commission. For Blue Crabs, units were standardized catch per unit effort. Details on the 
specific surveys can be found in (9, Table S2). 
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Table S2: Results for each species. For drivers, ZP=zooplankton biomass, Prcp=precipitation (blue crabs only), Land=Landings (blue crabs 
only), ENSO=El Niño Southern Oscillation, NPGO=North Pacific Gyre Oscillation, PDO=Pacific Decadal Oscillation, NAO=North Atlantic 
Oscillation, BEUTI=Biologically Effective Upwelling Transport Index, and CEUTI=Coastal Upwelling Transport Index (20). ‘-’ denotes the driver 
was not considered for the species; CEUTI was not selected as a driver for any species; log N are lags of abundance. Numbers before taxon 
names denote Fig. 1 groups: 1=Flatfishes, 2=‘Herrings’ (Clupeiformes), 3=Squids, 4=Hakes, 5=Crabs. ‘S.R. Mechanisms’ denotes the synchrony-
reducing mechanisms that, when modeled individually, each reduced synchrony by >0.1 (compared to a model with all mechanisms absent): D = 
demographic RD, E = environmental RD, G = environmental gradients. 
 

Taxon L 
R2 full 
model 

S.R. 
Mech-

anisms 

# 
loca-
tions 

# 
drivers 

Sum of Φ across time lags for driver, if driver used 

log N 
Winter 
temp 

Summer 
temp ZP NAO NPGO ENSO PDO BEUTI Prcp Land 

1Fourspot flounder 5 0.38 D 5 4 2.0  0.1 0.4 3.5 - - - - - - 
1Yellowt. flounder 5 0.54 DG 3 3 1.7   0.6 2 - - - - - - 
1Winter flounder 6 0.38 DG 7 3 2.8 1.1   2 - - - - - - 
Atlantic Mackerel 6 0.55 G 4 3 1.8  0.7  1.4 - - - - - - 
Butterfish 6 0.41  5 3 3.1   0.6 3.1 - - - - - - 
Bluefish 4 0.5 DG 8 3 2.0   0.3 2.9 - - - - - - 
Black sea bass 6 0.58 G 4 4 1.7  0.1 0.7 2 - - - - - - 
Scup 6 0.4 DG 4 3 0.7   2.2 1.5 - - - - - - 
Spiny dogfish 6 0.4 G 6 3 2.2   1.2 1.2 - - - - - - 
Longhorn sculpin 6 0.51 D 6 3 3.0   1 2.1 - - - - - - 
Sea raven 5 0.41 G 7 2 3.1    3.5 - - - - - - 
Northern searobin 5 0.4 EG 7 3 0.6   0.8 3.9 - - - - - - 
Fawn eel 6 0.39 G 8 3 1.5   0.8 1.6 - - - - - - 
Clearnose skate 3 0.45 G 6 4 1.1  0.5 0.2 3.2 - - - - - - 
Little skate 4 0.4 G 5 3 1.8   1.4 1 - - - - - - 
Caridea 4 0.55 G 5 3 1.8   0.2 2.3 - - - - - - 
2Atlantic herring 6 0.61 DEG 5 3 2.0   1.4 2.3 - - - - - - 
2American shad 6 0.51  5 3 2.7   0.8 1.6 - - - - - - 
Scallop 6 0.45 DG 5 3 2.3   1.4 1.7 - - - - - - 
3Shortfin squid 6 0.48 G 4 3 2.5  1  1.7 - - - - - - 
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3Longfin squid 4 0.49  4 3 1.0 0.4   3.8 - - - - - - 
4Silver hake 6 0.39 G 7 3 1.7   1.4 3 - - - - - - 
Atlantic cod 5 0.42  8 2 1.3    3.7 - - - - - - 
4Spotted hake 6 0.49  8 2 2.2    2.5 - - - - - - 
5Blue crab 6 0.35 DG 17 5 0.9 0.9 0.8 - - - - - - 1.1 0.7 
5Dungeness crab 1 0.67 DE 16 4 0.3    - 3.4 3.5 3.5  - - 
3Market squid 2 0.56 E 7 6 0.3 0.9   - 0.4 1.1 0.9 0.7 - - 
4Pacific hake 2 0.57 E 7 5 0.6    - 1.4 1.2 1 0.3 - - 
YOY Rockfish 1 0.55 E 7 4 0.8    - 2.4 1.4 1.4  - - 
Krill 1 0.67 EG 16 5 0.7 0.2   - 2.1 1.2 1.5  - - 
1Sanddabs 1 0.73 E 7 4 0.9    - 1.4 1.5 1.8  - - 
2Northern anchovy 3 0.47 DEG 8 4 1.5   0.4 -  1.6 1  - - 
Jack mackerel 5 0.36 G 7 5 1.6 0.3 1.5  - 0.9  1.8  - - 
Pacific mackerel 3 0.38 E 6 4 0.7    - 1.1 1.4 1.3  - - 
Pacific saury 1 0.49 G 8 4 0.4    - 2 1.3 1.5  - - 
2 Pacific sardine 3 0.48 DG 8 4 0.8   0.3   -   1.6 2.4   - - 
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